Explaining C. Romer Numbers

(Slide 25 IS/LM)
Using Model from Class

• \(Y = \frac{c_0 + l + G - c_1 T}{1 - c_1} \)

• One unit increase in \(G \) increases \(Y \) by \(1/(1-c_1) \)

• Inconsistent with numbers from C. Romer which are generally increasing

• Implies \(c_1 \) changing across quarters

• Or generated by different model
Response to Permanent Increase in G

c1=0.3 Standard Model
Alternative Habit Formation Model

- \(C(t) - C(t-1) = a \left(C(t) \times - C(t-1) \right) \)
 - with \(C(t) \times = c_0 + c_1 Y(t) \)
 - \(0 < a \leq 1 \)
 - For \(a = 1 \), \(C(t) = C(t) \times \)

- \(Y(t) = C(t) + G(t) \)

- Solution: \(Y(t) = c_0 + (1-a)C(t-1) + G(t)/(1-ac_1) \)
Response to Permanent Increase in G

$c_1=0.3$, $a=0.5$ Habit Formation

![Graph showing response to permanent increase in G]