These slides are NOT a substitute for chapters 6 to 9 of the book. They are meant to give you a more concise and analytical presentation of the the Medium Run Model but many aspects of the model that are discussed in the book are not in these slides, and we shall assume you have read the book.
Output determination in the Short Run

(D is Demand, P is the price of Y)

Firms produce anything that is demanded
How bad is the assumption that prices don’t move? Not too bad in the short run: 4 to 6 quarters.
Think about what happens when firms respond to an increase in demand by increasing production.

- Higher production will lead to higher employment.
- Higher employment will lead to lower unemployment.
- Lower unemployment will lead to higher wages.
- Higher wages will increase production costs, leading firms to raise prices.
- Higher prices will lead workers to ask for higher wages.
- Higher wages will lead to further increases in prices.
- and so on ...

So far we assumed $P = 1$.

We now move away from this assumption.

To understand how the sequence of events described above happens we need to understand:

- how the labor market works: employment \rightarrow unemployment \rightarrow wages
- how firms set prices given production costs

Population: 308.7 million

- Non institutionalized civilian population: 237.8 million
 - Out of the labor force: 84.0 million
 - Civilian labor force: 153.8 million
 - Employment: 139 million
 - Unemployed: 14.8 million
Labor market flows: measurement

- The Current Population Survey (CPS), is a monthly sample survey of approximately 60,000 households.
- Each month, the CPS is administered to about 40,000 households that were also in the survey during the previous month.
- The other 20,000 consists of new households.

The month-to-month overlap allows the Bureau of Labor Statistics to track individuals who change labor force status from one month to the next.

<table>
<thead>
<tr>
<th>Status in prior month</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Not in labor force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed...............</td>
<td>EE</td>
<td>EU</td>
<td>EN</td>
</tr>
<tr>
<td>Unemployed.............</td>
<td>UE</td>
<td>UU</td>
<td>UN</td>
</tr>
<tr>
<td>Not in the labor force</td>
<td>NE</td>
<td>NU</td>
<td>NN</td>
</tr>
</tbody>
</table>

Figure is in the public domain courtesy of the Bureau of Labor Statistics.
Labor market flows

What occurs in the labor market:

Establishment A
- Happy
- Sad
- Laid off and unemployed
- Laid off and leaves the labor force
- Happy
- Quits for job at establishment B

Establishment B
- Happy
- Enters the labor force
- Happy
- Retires
- Happy
- Quit and leaves the labor force

Figure is in the public domain courtesy of the Bureau of Labor Statistics.
Table 1. Labor force status flows, average monthly estimates, CPS data, 1990–2006

<table>
<thead>
<tr>
<th>Labor force flows</th>
<th>Number of individuals (in thousands)</th>
<th>Percent of population</th>
<th>Percent of labor force</th>
<th>Percent of original stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed to unemployed (EU)</td>
<td>1,821</td>
<td>0.9</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Employed to not in labor force (EN)</td>
<td>3,561</td>
<td>1.7</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Unemployed to employed (UE)</td>
<td>2,035</td>
<td>1.0</td>
<td>1.5</td>
<td>27.4</td>
</tr>
<tr>
<td>Unemployed to not in labor force (UN)</td>
<td>1,642</td>
<td>.8</td>
<td>1.2</td>
<td>22.1</td>
</tr>
<tr>
<td>Not in labor force to employed (NE)</td>
<td>3,398</td>
<td>1.6</td>
<td>2.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Not in labor force to unemployed (NU)</td>
<td>1,832</td>
<td>.9</td>
<td>1.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Figure is in the public domain courtesy of the [Bureau of Labor Statistics](https://www.bls.gov/).
Average monthly worker flows, 1996-2003

Courtesy of Steven J. Davis, R. Jason Faberman, John Haltiwanger, and the American Economic Association. Used with permission.
Job creation and job destruction over the cycle

Figure 2
Quarterly Job Flows in the Private Sector, 1990–2005

Source: Faberman (2006); tabulated from BLS Business Employment Dynamics (BED) micro data.
Note: Shaded areas show NBER-dated recessions.

Courtesy of Steven J. Davis, R. Jason Faberman, John Haltiwanger, and the American Economic Association. Used with permission.
Hires, separations, quits and layoffs over the cycle

![Graph showing annual levels for hires, total separations, quits, layoffs and discharges, not seasonally adjusted, 2007–2011.](source: U.S. Bureau of Labor Statistics)

Figure is in the public domain courtesy of the [Bureau of Labor Statistics](https://www.bls.gov).
Labor force participation in a boom and in a recession

How are wages and prices set

- **wage setting**

\[W = P^e F(u, z) \]

Let’s assume for the time being \(P^e = P \), so that dividing by \(P \) we get the real wage \(W/P \)

\[\frac{W}{P} = F(u, z), \quad F_u < 0, \quad F_z > 0 \]

- **price setting:** Start from the production function assuming only one factor, \(N \) and constant returns to scale, so that marginal cost is \(W \)

\[Y = N \]

\[P = (1 + m)W \]

\[\frac{W}{P} = \frac{1}{1 + m} \]
Wages, prices and the "natural" rate of unemployment

The «natural» rate of unemployment

\[
\frac{W}{P} = \frac{1}{1+m} \\
\]

Wage setting relation (for given z)

Price setting relation

\[u_n\]
An increase in the generosity of unemployment benefits

The «natural» rate at a higher z

WS (for given z)

WS (for a higher level of z)

Price setting relation

u_n u'_n
Higher competition (lower mark-ups) reduce the natural rate of unemployment.

The «natural» rate of unemployment at $m' < m$.
Model 3: a macroeconomic model of the Medium Run

- Aggregate supply (for given P^e)
 - wage determination
 \[W = P^e F(u, z) \]
 - price determination
 \[P = (1 + m) W \]

\[P = P^e (1 + m) F(u, z) \]

- Going from u to Y
 \[u = \frac{U}{L} = \frac{L - N}{L} = 1 - \frac{N}{L} = 1 - \frac{Y}{L} \]

- Price setting (for given P^e)
 \[P = P^e (1 + m) F(1 - \frac{Y}{L}, z) \]
Model 3: a macroeconomic model of the Medium Run

- Aggregate demand

\[\frac{M}{P} = YL(i) \]