Single-Deviation Principle and Bargaining

Mihai Manea

MIT
Multi-stage games with observable actions

- finite set of players N
- stages $t = 0, 1, 2, \ldots$
- H: set of terminal histories (sequences of action profiles of possibly different lengths)
- at stage t, after having observed a non-terminal history of play $h_t = (a^0, \ldots, a^{t-1}) \not\in H$, each player i simultaneously chooses an action $a^t_i \in A_i(h_t)$
- $u_i(h)$: payoff of $i \in N$ for terminal history $h \in H$
- σ_i: behavior strategy for $i \in N$ specifies $\sigma_i(h) \in \Delta(A_i(h))$ for $h \not\in H$

Often natural to identify “stages” with time periods.

Examples

- repeated games
- alternating bargaining game
Unimprovable Strategies

To verify that a strategy profile \(\sigma \) constitutes a subgame perfect equilibrium (SPE) in a multi-stage game with observed actions, it suffices to check whether there are any histories \(h_t \) where some player \(i \) can gain by deviating from playing \(\sigma_i(h_t) \) at \(t \) and conforming to \(\sigma_i \) elsewhere.

\(u_i(\sigma|h_t) \): expected payoff of player \(i \) in the subgame starting at \(h_t \) and played according to \(\sigma \) thereafter

Definition 1

A strategy \(\sigma_i \) is *unimprovable* given \(\sigma_{-i} \) if \(u_i(\sigma_i, \sigma_{-i}|h_t) \geq u_i(\sigma'_i, \sigma_{-i}|h_t) \) for every \(h_t \) and \(\sigma'_i \) with \(\sigma'_i(h) = \sigma_i(h) \) for all \(h \neq h_t \).
Continuity at Infinity

If σ is an SPE then σ_i is unimprovable given σ_{-i}. For the converse...

Definition 2

A game is **continuous at infinity** if

$$\lim_{t \to \infty} \sup_{(h, \tilde{h}) \mid h_t = \tilde{h}_t} \left| u_i(h) - u_i(\tilde{h}) \right| = 0, \forall i \in \mathbb{N}.$$

Events in the distant future are relatively unimportant.
Theorem 1

Consider a multi-stage game with observed actions that is continuous at infinity. If \(\sigma_i \) is unimprovable given \(\sigma_{-i} \) for all \(i \in N \), then \(\sigma \) constitutes an SPE.

Proof allows for infinite action spaces at some stages. There exist versions for games with unobserved actions.
Proof

Suppose that σ_i is unimprovable given σ_{-i}, but σ_i is not a best response to σ_{-i} following some history h_t. Let σ_i^1 be a strictly better response and define

$$\varepsilon = u_i(\sigma_i^1, \sigma_{-i}|h_t) - u_i(\sigma_i, \sigma_{-i}|h_t) > 0.$$

Since the game is continuous at infinity, there exists $t' > t$ and σ_i^2 s.t. σ_i^2 is identical to σ_i^1 at all information sets up to (and including) stage t', σ_i^2 coincides with σ_i across all longer histories and

$$|u_i(\sigma_i^2, \sigma_{-i}|h_t) - u_i(\sigma_i^1, \sigma_{-i}|h_t)| < \varepsilon/2.$$

Then

$$u_i(\sigma_i^2, \sigma_{-i}|h_t) > u_i(\sigma_i, \sigma_{-i}|h_t).$$
Proof

σ^3_i: strategy obtained from σ^2_i by replacing the stage t' actions following any history $h_{t'}$ with the corresponding actions under σ_i

Conditional on any $h_{t'}$, σ_i and σ^3_i coincide, hence

$$u_i(\sigma^3_i, \sigma_{-i}|h_{t'}) = u_i(\sigma_i, \sigma_{-i}|h_{t'}).$$

As σ_i is unimprovable given σ_{-i}, and conditional on $h_{t'}$ the subsequent play in strategies σ_i and σ^2_i differs only at stage t',

$$u_i(\sigma_i, \sigma_{-i}|h_{t'}) \geq u_i(\sigma^2_i, \sigma_{-i}|h_{t'}).$$

Then

$$u_i(\sigma^3_i, \sigma_{-i}|h_{t'}) \geq u_i(\sigma^2_i, \sigma_{-i}|h_{t'})$$

for all histories $h_{t'}$. Since σ^2_i and σ^3_i coincide before reaching stage t',

$$u_i(\sigma^3_i, \sigma_{-i}|h_t) \geq u_i(\sigma^2_i, \sigma_{-i}|h_t).$$
Proof

\(\sigma^4_i\): strategy obtained from \(\sigma^3_i\) by replacing the stage \(t' - 1\) actions following any history \(h_{t'-1}\) with the corresponding actions under \(\sigma_i\).

Similarly,

\[u_i(\sigma^4_i, \sigma_{-i}|h_t) \geq u_i(\sigma^3_i, \sigma_{-i}|h_t) \ldots \]

The final strategy \(\sigma^{t'-t+3}_i\) is identical to \(\sigma_i\) conditional on \(h_t\) and

\[u_i(\sigma_i, \sigma_{-i}|h_t) = u_i(\sigma^{t'-t+3}_i, \sigma_{-i}|h_t) \geq \ldots \]

\[\geq u_i(\sigma^3_i, \sigma_{-i}|h_t) \geq u_i(\sigma^2_i, \sigma_{-i}|h_t) > u_i(\sigma_i, \sigma_{-i}|h_t), \]

a contradiction.
Apply the single deviation principle to repeated prisoners’ dilemma to implement the following equilibrium paths for high discount factors:

- \((C, C), (C, C), \ldots\)
- \((C, C), (C, C), (D, D), (C, C), (C, C), (D, D), \ldots\)
- \((C, D), (D, C), (C, D), (D, C) \ldots\)

Cooperation is possible in repeated play.
Rubinstein (1982)

- players \(i = 1, 2; j = 3 - i \)
- set of feasible utility pairs

\[
U = \{(u_1, u_2) \in [0, \infty)^2 | u_2 \leq g_2(u_1)\}
\]

- \(g_2 \) s. decreasing, concave (and hence continuous), \(g_2(0) > 0 \)
- \(\delta_i \): discount factor of player \(i \)
- at every time \(t = 0, 1, \ldots \), player \(i(t) \) proposes an alternative \(u = (u_1, u_2) \in U \) to player \(j(t) = 3 - i(t) \)

\[
i(t) = \begin{cases}
1 & \text{for } t \text{ even} \\
2 & \text{for } t \text{ odd}
\end{cases}
\]

- if \(j(t) \) accepts the offer, game ends yielding payoffs \((\delta^t_1 u_1, \delta^t_2 u_2) \)
- otherwise, game proceeds to period \(t + 1 \)
Stationary SPE

Define \(g_1 = g_2^{-1} \). Graphs of \(g_2 \) and \(g_1^{-1} \): Pareto-frontier of \(U \)

Let \((m_1, m_2)\) be the unique solution to the following system of equations

\[
\begin{align*}
 m_1 &= \delta_1 g_1 (m_2) \\
 m_2 &= \delta_2 g_2 (m_1).
\end{align*}
\]

\((m_1, m_2)\) is the intersection of the graphs of \(\delta_2 g_2 \) and \((\delta_1 g_1)^{-1}\).

SPE in “stationary” strategies: in any period where player \(i \) has to make an offer to \(j \), he offers \(u \) with \(u_j = m_j \) and \(u_i = g_i(m_j) \), and \(j \) accepts only offers \(u \) with \(u_j \geq m_j \).

Single-deviation principle: constructed strategies form an SPE.

Is the SPE unique?
Iterated Conditional Dominance

Definition 3
In a multi-stage game with observable actions, an action a_i is conditionally dominated at stage t given history h_t if, in the subgame starting at h_t, every strategy for player i that assigns positive probability to a_i is strictly dominated.

Proposition 1
In any multi-stage game with observable actions, every SPE survives the iterated elimination of conditionally dominated strategies.
Equilibrium uniqueness

Iterated conditional dominance: stationary equilibrium is essentially the unique SPE.

Theorem 2

The SPE of the alternating-offer bargaining game is unique, except for the decision to accept or reject Pareto-inefficient offers.
Proof

▶ Following a disagreement at date t, player i cannot obtain a period t expected payoff greater than

$$M_i^0 = \delta_i \max_{u \in U} u_i = \delta_i g_i(0)$$

▶ Rejecting an offer u with $u_i > M_i^0$ is conditionally dominated by accepting such an offer for i.

▶ Once we eliminate dominated actions, i accepts all offers u with $u_i > M_i^0$ from j.

▶ Making any offer u with $u_i > M_i^0$ is dominated for j by an offer

$$\bar{u} = \lambda u + (1 - \lambda) \left(M_i^0, g_j \left(M_i^0 \right) \right)$$

for $\lambda \in (0, 1)$ (both offers are accepted immediately).
Proof

Under the surviving strategies

▶ j can reject an offer from i and make a counteroffer next period that leaves him with slightly less than $g_j(M^0_i)$, which i accepts; it is conditionally dominated for j to accept any offer smaller than

$$m^1_j = \delta_j g_j(M^0_i)$$

▶ i cannot expect to receive a continuation payoff greater than

$$M^1_i = \max(\delta_i g_i(m^1_j), \delta_i^2 M^0_i) = \delta_i g_i(m^1_j)$$

after rejecting an offer from j

$$\delta_i g_i(m^1_j) = \delta_i g_i(\delta_j g_j(M^0_i)) \geq \delta_i g_i(g_j(M^0_i)) = \delta_i M^0_i \geq \delta_i^2 M^0_i$$
Proof

Recursively define

\[m_j^{k+1} = \delta_j g_j (M_i^k) \]
\[M_i^{k+1} = \delta_i g_i (m_j^{k+1}) \]

for \(i = 1, 2 \) and \(k \geq 1 \). \((m_i^k)_{k \geq 0} \) is increasing and \((M_i^k)_{k \geq 0} \) is decreasing.

Prove by induction on \(k \) that, under any strategy that survives iterated conditional dominance, player \(i = 1, 2 \)

- never accepts offers with \(u_i < m_i^k \)
- always accepts offers with \(u_i > M_i^k \), but making such offers is dominated for \(j \).
Proof

- The sequences \((m_i^k)\) and \((M_i^k)\) are monotonic and bounded, so they need to converge. The limits satisfy

\[
\begin{align*}
m_j^\infty &= \delta_j g_j \left(\delta_i g_i \left(m_j^\infty \right) \right) \\
M_i^\infty &= \delta_i g_i \left(m_j^\infty \right).
\end{align*}
\]

- \((m_1^\infty, m_2^\infty)\) is the (unique) intersection point of the graphs of the functions \(\delta_2 g_2\) and \((\delta_1 g_1)^{-1}\)

- \(M_i^\infty = \delta_i g_i \left(m_j^\infty \right) = m_i^\infty\)

- All strategies of \(i\) that survive iterated conditional dominance accept \(u\) with \(u_i > M_i^\infty = m_i^\infty\) and reject \(u\) with \(u_i < m_i^\infty = M_i^\infty\).
Proof

In an SPE

- at any history where \(i \) is the proposer, \(i \)'s payoff is at least \(g_i(m_j^\infty) \): offer \(u \) arbitrarily close to \((g_i(m_j^\infty), m_j^\infty) \), which \(j \) accepts under the strategies surviving the elimination process
- \(i \) cannot get more than \(g_i(m_j^\infty) \)
 - any offer made by \(i \) specifying a payoff greater than \(g_i(m_j^\infty) \) for himself would leave \(j \) with less than \(m_j^\infty \); such offers are rejected by \(j \) under the surviving strategies
 - under the surviving strategies, \(j \) never offers \(i \) more than \(M_i^\infty = \delta_i g_i(m_j^\infty) \leq g_i(m_j^\infty) \)
 - hence \(i \)'s payoff at any history where \(i \) is the proposer is exactly \(g_i(m_j^\infty) \); possible only if \(i \) offers \((g_i(m_j^\infty), m_j^\infty) \) and \(j \) accepts with probability 1

Uniquely pinned down actions at every history, except those where \(j \) has just received an offer \((u_i, m_j^\infty) \) for some \(u_i < g_i(m_j^\infty) \)
Properties of the equilibrium

- The SPE is efficient—agreement is obtained in the first period, without delay.
- SPE payoffs: \((g_1(m_2), m_2)\), where \((m_1, m_2)\) solve

\[
\begin{align*}
m_1 &= \delta_1 g_1 (m_2) \\
m_2 &= \delta_2 g_2 (m_1)
\end{align*}
\]

- Patient players get higher payoffs: the payoff of player \(i\) is increasing in \(\delta_i\) and decreasing in \(\delta_j\).
- For a fixed \(\delta_1 \in (0, 1)\), the payoff of player 2 converges to 0 as \(\delta_2 \to 0\) and to \(\max_{u \in U} u_2\) as \(\delta_2 \to 1\).
- If \(U\) is symmetric and \(\delta_1 = \delta_2\), player 1 enjoys a first mover advantage: \(m_1 = m_2\) and \(g_1(m_2) = m_2/\delta > m_2\).
Nash Bargaining

Assume g_2 is decreasing, s. concave and continuously differentiable.

Nash (1950) bargaining solution:

$$\{u^*\} = \arg \max_{u \in U} u_1 u_2 = \arg \max_{u \in U} u_1 g_2(u_1).$$

Theorem 3 (Binmore, Rubinstein and Wolinsky 1985)

Suppose that $\delta_1 = \delta_2 =: \delta$ in the alternating bargaining model. Then the unique SPE payoffs converge to the Nash bargaining solution as $\delta \to 1$.

$$m_1 g_2 (m_1) = m_2 g_1 (m_2)$$

$(m_1, g_2 (m_1))$ and $(g_1 (m_2), m_2)$ belong to the intersection of g_2’s graph with the same hyperbola, which approaches the hyperbola tangent to the boundary of U (at u^*) as $\delta \to 1$.
Bargaining with random selection of proposer

- Two players need to divide $1.
- Every period $t = 0, 1, \ldots$ player 1 is chosen with probability p to make an offer to player 2.
- Player 2 accepts or rejects 1’s proposal.
- Roles are interchanged with probability $1 - p$.
- In case of disagreement the game proceeds to the next period.
- The game ends as soon as an offer is accepted.
- Player $i = 1, 2$ has discount factor δ_i.
The unique equilibrium is stationary, i.e., each player \(i \) has the same expected payoff \(v_i \) in every subgame.

Payoffs solve

\[
\begin{align*}
v_1 &= p(1 - \delta_2 v_2) + (1 - p)\delta_1 v_1 \\
v_2 &= p\delta_2 v_2 + (1 - p)(1 - \delta_1 v_1).
\end{align*}
\]

The solution is

\[
\begin{align*}
v_1 &= \frac{p/(1 - \delta_1)}{p/(1 - \delta_1) + (1 - p)/(1 - \delta_2)} \\
v_2 &= \frac{(1 - p)/(1 - \delta_2)}{p/(1 - \delta_1) + (1 - p)/(1 - \delta_2)}.
\end{align*}
\]
Comparative Statics

\[
\begin{align*}
\nu_1 & = \frac{1}{1 + \frac{(1-p)(1-\delta_1)}{p(1-\delta_2)}} \\
\nu_2 & = \frac{1}{1 + \frac{p(1-\delta_2)}{(1-p)(1-\delta_1)}}.
\end{align*}
\]

- Immediate agreement
- First mover advantage
 - \(\nu_1 \) increases with \(p \), \(\nu_2 \) decreases with \(p \).
 - For \(\delta_1 = \delta_2 \), we obtain \(\nu_1 = p, \nu_2 = 1 - p \).
- Patience pays off
 - \(\nu_i \) increases with \(\delta_i \) and decreases with \(\delta_j \) \((j = 3 - i)\).
 - Fix \(\delta_j \) and take \(\delta_i \rightarrow 1 \), we get \(\nu_i \rightarrow 1 \) and \(\nu_j \rightarrow 0 \).
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.