
1. LASSO AND POST-LASSO IN A SIMPLE MODEL

Consider a classical linear regression model

\[y_i = x_i' \beta_0 + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2), \text{ where the noise } \epsilon_i \text{ are i.i.d., } i = 1, \ldots, n, \]

\[y_i \text{ is the response variables, and } x_i \text{ are } p\text{-dimensional covariates, and } \beta_0 \text{ is the true value of} \]

the parameter vector \(\beta = (\beta_1, \ldots, \beta_p)' \). For convenience we normalize the covariates so that \(E_n[x_{ij}^2] = 1, \) for \(j = 1, \ldots, p, \) where \(E_n \) stands for \(n^{-1} \sum_{i=1}^n \). Let \(X = [x_1 \cdots x_n]' \). The orthonormal design case occurs when \((X'X)_{jk} = 0 \) for all \(j \neq k; \) in such a case we have that \(X'X/n = I, \) where \(I \) is a \(p \times p \) identity matrix.

Consider the LASSO estimator for \(\lambda > 0. \)

\[\hat{\beta} \in \arg \min_{\beta \in \mathbb{R}^p} E_n[(y_i - x_i' \beta)^2] + \frac{\lambda}{n} \| \beta \|_1, \]

and the post LASSO estimator

\[\tilde{\beta} \in \arg \min_{\beta \in \mathbb{R}^p} E_n[(y_i - x_i' \beta)^2] : \beta_j = 0 \quad \text{if } \hat{\beta}_j = 0. \]

Assuming the orthonormal design case, solve one the following questions:

(a) Derive the explicit solution for the LASSO and Post-LASSO estimators.

(b) Suppose \(\beta_0 = 0, \) characterize the minimal value of \(\lambda \) that correctly forces \(\tilde{\beta} = 0 \) in this case.

This question is going to be covered in the TA session, which provides an incentive to attend this.

2. POST-DUPLE-SELECTION INFERENCE

Please do one of the following:

Also an R-code is available by request by e-mail. Write up your results as 1-2 paragraph summary of what the double-selection method is doing and how it is relevant in the empirical example.

Also an R-code is available by request. Write up your results as 1-2 paragraph summary of what the double-selection method is doing and how it is relevant in the empirical example.

3. Try the post-double-selection method on any other interesting data-set. Here if you come up with an interesting example, there is going to be a prize in the form of the book by Aad Van der Vaart "Asymptotic Statistics", which is a great book. You can download Matlab and Stata commands from: http://faculty.chicagobooth.edu/christian.hansen/research/. Also an R-code is available by request. Write up your results as 1-2 paragraph summary of what the double-selection method is doing and how it is relevant in the empirical example.