Intergenerational mobility: Empirics

Heidi L. Williams

MIT 14.662

Spring 2015
Where we left off last time

- **Theory:**
 - Human capital approach: Becker and Tomes (1979)
 - Goldberger (1989) critique

- **Measurement:**

- **Empirics:**
 - Adoption studies: Sacerdote (2007) and Björkland et al. (2006)
 - Natural experiment/IV approaches: Black et al. (2005)
 - Within-US geography: Chetty et al. (2014)
1. Regression analysis using adoptees
 - Sacerdote (2007)
 - Björkland, Lindahl, and Plug (2006)

2. Natural experiment/IV estimates
 - Black, Devereux, and Salvanes (2005)
 - Parental education and infant health

4. Looking ahead
Regression analysis using adoptees

Many psychology/sociology analyses of adoptions to estimate effects of family environments (e.g. heritability of IQ). If:

1. Adopted children are randomly assigned to families as infants
2. and adopted and biological children are treated equally

then adoption is a quasi-experiment randomly assigning children to families ⇒ can be used to investigate effects of family environment
Main contributions of recent economics papers

What have economists added?

1. *Much* larger sample sizes
2. Contexts with quasi-random assignment
3. Wider range of outcome variables
4. “Treatment effects” framework that relies on fewer assumptions than traditional behavioral genetics framework

Key papers: Sacerdote (2007) and Björkland *et al.* (2006)
Black and Devereux (2011) distinguish three types of empirical approaches have been applied to adoptee data:

1. Bivariate regression approach ("transmission coefficients")
2. Multivariate regression approach
3. Combining information on biological and adoptive parents
Bivariate regression approach ("transmission coefficients")

- \(y_1 = \alpha + \lambda y_0 + \varepsilon \)
 - \(y_1, y_0 \): child and parent outcomes (e.g. log earnings)
 - Estimate separately for adoptees, non-adopted siblings
- Compare \(\lambda \) for adoptees and non-adoptees
 - If nurture doesn’t matter: \(\lambda = 0 \) for adoptees (e.g. height)
 - If genes don’t matter: similar \(\lambda \)'s (e.g. purely social outcomes)
 - Relative value of \(\lambda \) for adoptees, non-adoptees gives an indication of the importance of nature versus nurture
- Do not have a direct causal interpretation
Multivariate regression approach

\[y_1 = \alpha + \lambda_1 S_0^m + \lambda_2 S_0^f + \lambda_3 Z + \varepsilon \]
- Estimate on a sample of adoptees
- \(S_0^m, S_0^f \): education of adoptive mother and father
- \(Z \): other family characteristics (income, family size)

Do not have a direct causal interpretation: not possible to hold “all else” equal and isolate the causal effect of, say, mother’s education

Can offer suggestive evidence of factors that appear important
Combining information on biological and adoptive parents

\[y_1 = \alpha + \lambda_a y_{0a} + \lambda_b y_{0b} + \varepsilon \]

- Estimate on a sample of adoptees
- Requires data on both biological \((b)\) and adoptive \((a)\) parents

- Model allows a direct comparison of the influence of the characteristics of biological and adoptive parents

- Do not have a direct causal interpretation
1 Regression analysis using adoptees
 - Sacerdote (2007)
 - Björkland, Lindahl, and Plug (2006)

2 Natural experiment/IV estimates
 - Black, Devereux, and Salvanes (2005)
 - Parental education and infant health

3 Within-US geography of intergenerational mobility: Chetty et al. (2014)

4 Looking ahead
Sacerdote (2007)

New data to analyze a unique quasi-experiment

- Holt International Children’s Services, 1964-1985
- Korean-American adoptees
- Quasi-random assignment of children to adoptive families
 - Conditional on family being certified by Holt to adopt
 - First-come, first-served policy (useful to keep in mind)
 - Effective randomization cond’l on adoptee’s cohort, gender
 - Randomization looks valid based on pre-treatment observables
Sacerdote (2007): Data collection

Data collection was a *major* undertaking

- Collaborative effort by Sacerdote and Holt
- Survey administered to adoptees/families in 2004-05
- Public-use version of the data now publicly available: http://www.dartmouth.edu/~bsacerdo/holt_adoption_public_use2006.dta

- Very careful attention to detail on data collection:
 1. Low response rate to initial survey of parents (34%): re-surveyed a sample of non-respondents; tested and found responses not significantly correlated with outcomes
 2. Directly surveyed smaller sample of children, found high degree of correspondence between their responses and parents’ reports

- Looks at NLSY, Census to gauge external validity
Sacerdote (2007): Empirical frameworks

Three empirical frameworks:
1. Variance decomposition: Behavioral genetics framework
2. Treatment effects framework
3. Estimation of transmission coefficients
Empirical framework #1: Variance decomposition

Standard behavioral genetics model

\[Y = G + F + S \]

- \(Y \): child outcomes (e.g. years of education)
- \(G \): genetic inputs
- \(F \): family environment
- \(S \): unexplained factors (residual)

Strong assumptions: nature \((G)\) and family environment \((F)\) enter linearly and additively; no interactions
Empirical framework #1: Variance decomposition

Assume G, F, S not correlated. Taking variance of both sides:

$$\sigma_Y^2 = \sigma_G^2 + \sigma_F^2 + \sigma_S^2$$

Divide both sides by variance in the outcome (σ_Y^2), and define:

- $h^2 = \frac{\sigma_G^2}{\sigma_Y^2}$ (heritability)
- $c^2 = \frac{\sigma_F^2}{\sigma_Y^2}$ (family environment)
- $e^2 = \frac{\sigma_S^2}{\sigma_Y^2}$ (error term)

Implies standard behavioral genetics equation:

$$1 = h^2 + c^2 + e^2$$

Variance of child outcomes is the sum of the variance from genetic inputs, the variance from family environment, and the variance from non-shared environment (the residual)
Less parametric analysis: What is the effect of being assigned to particular family “types” on adoptee outcomes?

1. **Type one (27% of the sample):** highly educated, small families (≤ 3 children, both parents have four years of college)

2. **Type three (12% of the sample):** neither parent has four years of college, ≥ 4 children in family

3. **Type two (61% of the sample):** families not in extreme groups

Why education, family size? Motivated by multivariate analysis
Empirical framework #2: Treatment effects

\[E_i = \alpha + \beta_1 T_{1i} + \beta_2 T_{2i} + \beta_3 \text{Male}_i + \gamma A_i + \rho C_i + \epsilon_i \]

- Estimated on sample of adoptees
- \(E_i \) is educational attainment for child \(i \)
- \(\beta_1 \): group 1 vs. group 3
- \(\beta_2 \): group 2 vs. group 3
- \(A_i \): age indicators (education varies with age)
- \(C_i \): cohort indicators (needed for random assignment)
- \(\text{Male}_i \): gender indicator (needed for random assignment)

Education and family size not necessarily the relevant channels
Empirical framework #3: Transmission coefficients

\[E_i = \alpha + \delta_1 E_{Mi} + \beta_3 \text{Male}_i + \gamma A_i + \rho C_i + \varepsilon_i \]

- Sample of adoptees
- \(E_{Mi} \): adoptive mother’s years of education

\[E_j = \alpha + \delta_2 E_{Mj} + \beta_3 \text{Male}_j + \gamma A_j + \rho C_j + \varepsilon_j \]

- Sample of non-adoptees
- \(E_{Mj} \): (biological) mother’s years of education

A comparison of \(\delta_1 \) and \(\delta_2 \) is an estimate of how much of the transmission of education (or other outcomes) works through nurture, as opposed to through nature and nurture combined.
Descriptive results

Raw means are fascinating (great characteristic of a paper)

Figure 1: Pr(college grad) by family size
- Both adoptees, non-adoptees show steep decline
- Either direct effect, or picking up unobservables

If you’re interested, see also Black-Devereux-Salvanes (QJE 2005) on effects of family size and birth order
- Use twin births as variation in family size
Descriptive results: Figure 1

![Graph showing mean college attendance by family size for adoptees and non-adoptees. The dashed line represents non-adoptees and the solid line represents adoptees. The title of the graph is "FIGURE I Mean (College Attendance) By Family Size. Dashed line is for non-adoptees (higher line), solid line is for adoptees."
Descriptive results

Figure 2: Child’s education by mother’s education
- Strong transmission of education from mothers to children
- Upward sloping line steeper for non-adoptees

To me, this was very surprising; importance of pre-birth factors?
Descriptive results: Figure 2

![Graph showing mean child's years of education vs. mother's years of education for adoptees and non-adoptees.](image-url)

Figure II

Mean Child’s Years of Education vs. Mother’s Years of Education. Dashed line is for non-adoptees. Solid line is for adoptees.
Descriptive results

Figure 3: Child’s income by family income

- Almost non-existent for adoptees
- Strongly positive for non-adoptees

Again, to me this was very surprising (although perhaps this is the same “fact” as the education fact)
Descriptive results: Figure 3

[Graph description: Figure III
Mean of Child's Family Income by Parents' Income at Adoption. Dashed line is for nonadoptees (higher line). Solid line is for adoptees.]

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Variance decomposition

Bivariate regressions: Table 4, Figure 4
Behavioral genetics decomposition: Table 5
- Correlations in outcomes among sibling pairs after removing age, cohort, and gender effects
- Education: biological siblings have a correlation of 0.34 - 2.4 times larger than the correlation of 0.14 for adoptive siblings
- Drinking: essentially same correlation
- Note income has “usual” problems (single year, life cycle bias)
Bivariate regressions

Table IV

Correlations in Outcomes Among Pairs of Adoptive Siblings and Pairs of Biological Siblings

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Adoptive sibling correlation</th>
<th>Biological sibling correlation</th>
<th>N Adoptive</th>
<th>N Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has 4 years of college</td>
<td>0.135</td>
<td>0.338</td>
<td>1360</td>
<td>578</td>
</tr>
<tr>
<td>Highest grade completed</td>
<td>0.157</td>
<td>0.378</td>
<td>1360</td>
<td>578</td>
</tr>
<tr>
<td>Family income</td>
<td>0.110</td>
<td>0.277</td>
<td>1314</td>
<td>554</td>
</tr>
<tr>
<td>Log (family income)</td>
<td>0.139</td>
<td>0.301</td>
<td>1314</td>
<td>554</td>
</tr>
<tr>
<td>Drinks</td>
<td>0.336</td>
<td>0.363</td>
<td>1903</td>
<td>640</td>
</tr>
<tr>
<td>Smokes</td>
<td>0.152</td>
<td>0.289</td>
<td>1938</td>
<td>654</td>
</tr>
<tr>
<td>Height</td>
<td>0.014</td>
<td>0.443</td>
<td>1910</td>
<td>646</td>
</tr>
<tr>
<td>Weight</td>
<td>0.044</td>
<td>0.273</td>
<td>1822</td>
<td>629</td>
</tr>
<tr>
<td>BMI</td>
<td>0.115</td>
<td>0.269</td>
<td>1821</td>
<td>629</td>
</tr>
<tr>
<td>Overweight</td>
<td>0.087</td>
<td>0.173</td>
<td>1821</td>
<td>629</td>
</tr>
<tr>
<td>Attended US News ranked school</td>
<td>0.249</td>
<td>0.416</td>
<td>1360</td>
<td>578</td>
</tr>
<tr>
<td>Acceptance rate of school</td>
<td>0.337</td>
<td>0.460</td>
<td>560</td>
<td>245</td>
</tr>
<tr>
<td>Married</td>
<td>0.076</td>
<td>0.048</td>
<td>1917</td>
<td>650</td>
</tr>
<tr>
<td>Number of children</td>
<td>0.105</td>
<td>0.203</td>
<td>1802</td>
<td>633</td>
</tr>
</tbody>
</table>

I form all possible pairs of siblings within the data set. I purge the outcome variables of variation due to age dummies, cohort dummies, and gender. I report the correlation in outcomes for adoptive sibling pairs and biological sibling pairs. Adoptive sibling pairs occur when either one or both of the siblings in a family are adoptees (and the adoptees do not share a biological mother or father). Biological sibling pairs are those that share a biological mother and father who are also the “nurturing” parents. All of the correlations are statistically different from zero at the 1 percent level except for height and weight among adoptive siblings.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Bivariate regressions

![Bivariate regression graph]

FIGURE IV
Comparison of Adoptive and Nonadoptive Sibling Correlations for Various Outcomes

This graph displays the results in Table IV.
Behavioral genetics decomposition

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Proportion explained by nurture (shared family environment)</th>
<th>Proportion explained by nature (heritability)</th>
<th>Unexplained portion (non-shared environment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has 4 years of college</td>
<td>0.135</td>
<td>0.406</td>
<td>0.459</td>
</tr>
<tr>
<td>Highest grade completed</td>
<td>0.157</td>
<td>0.443</td>
<td>0.400</td>
</tr>
<tr>
<td>Family income</td>
<td>0.110</td>
<td>0.334</td>
<td>0.556</td>
</tr>
<tr>
<td>Log (family income)</td>
<td>0.139</td>
<td>0.324</td>
<td>0.537</td>
</tr>
<tr>
<td>Drinks</td>
<td>0.336</td>
<td>0.055</td>
<td>0.609</td>
</tr>
<tr>
<td>Smokes</td>
<td>0.152</td>
<td>0.273</td>
<td>0.575</td>
</tr>
<tr>
<td>Height</td>
<td>0.014</td>
<td>0.858</td>
<td>0.128</td>
</tr>
<tr>
<td>Weight</td>
<td>0.044</td>
<td>0.458</td>
<td>0.498</td>
</tr>
<tr>
<td>BMI</td>
<td>0.115</td>
<td>0.308</td>
<td>0.577</td>
</tr>
<tr>
<td>Overweight</td>
<td>0.087</td>
<td>0.172</td>
<td>0.741</td>
</tr>
<tr>
<td>Attended US News ranked school</td>
<td>0.249</td>
<td>0.335</td>
<td>0.417</td>
</tr>
<tr>
<td>Acceptance rate of school</td>
<td>0.337</td>
<td>0.245</td>
<td>0.418</td>
</tr>
<tr>
<td>Married</td>
<td>0.076</td>
<td>-0.056</td>
<td>0.979</td>
</tr>
<tr>
<td>Number of children</td>
<td>0.105</td>
<td>0.196</td>
<td>0.699</td>
</tr>
</tbody>
</table>

I use the simple BG model described in the text to decompose the variance in each outcome into the portions attributable to genes (heritability), shared family environment, and non-shared family environment (i.e., the unexplained portion). See equations (2), (2A), and the paragraph that follows.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Multivariate regressions

Caveat: impossible to definitely separate causal mechanisms

- Table 6: multiple regression estimates
- Mother’s education, family size
Multivariate regressions

TABLE VI

Regression of Adoptee Outcomes on Family Characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child's years of education</td>
<td>0.097 (0.027)<sup>a**</sup></td>
<td>0.023 (0.007)<sup>**</sup></td>
<td>0.003 (0.010)</td>
<td>-0.074 (0.055)</td>
<td>-0.007 (0.006)</td>
<td>0.010 (0.006)</td>
<td>-0.017 (0.009)</td>
</tr>
<tr>
<td>Mother's years of education</td>
<td>-0.120 (0.056)<sup>*</sup></td>
<td>-0.026 (0.012)<sup>*</sup></td>
<td>-0.044 (0.017)<sup>*</sup></td>
<td>0.106 (0.093)</td>
<td>0.011 (0.010)</td>
<td>0.001 (0.011)</td>
<td>0.016 (0.018)</td>
</tr>
<tr>
<td>Number of children</td>
<td>-0.057 (0.098)</td>
<td>-0.001 (0.025)</td>
<td>0.027 (0.038)</td>
<td>-0.229 (0.197)</td>
<td>-0.031 (0.021)</td>
<td>0.008 (0.023)</td>
<td>0.085 (0.035)<sup>*</sup></td>
</tr>
<tr>
<td>Log parents’ household income</td>
<td>-0.133 (0.286)</td>
<td>0.045 (0.069)</td>
<td>-0.015 (0.104)</td>
<td>-0.232 (0.502)</td>
<td>-0.044 (0.060)</td>
<td>0.045 (0.070)</td>
<td>-0.179 (0.118)</td>
</tr>
<tr>
<td>Log (zip code income)</td>
<td>-0.058 (0.153)</td>
<td>-0.010 (0.037)</td>
<td>-0.026 (0.054)</td>
<td>-0.222 (0.301)</td>
<td>-0.042 (0.031)</td>
<td>0.026 (0.034)</td>
<td>-0.030 (0.058)</td>
</tr>
<tr>
<td>Child is only adopted in family</td>
<td>0.078 (0.296)</td>
<td>0.042 (0.073)</td>
<td>-0.241 (0.104)<sup>**</sup></td>
<td>-0.095 (0.626)</td>
<td>-0.060 (0.664)</td>
<td>0.013 (0.065)</td>
<td>-0.225 (0.105)<sup>**</sup></td>
</tr>
<tr>
<td>Fraction girls in family</td>
<td>-0.097 (0.138)</td>
<td>-0.009 (0.034)</td>
<td>0.016 (0.047)</td>
<td>-0.248 (0.267)</td>
<td>-0.016 (0.029)</td>
<td>0.188 (0.030)<sup>**</sup></td>
<td>-0.085 (0.046)</td>
</tr>
<tr>
<td>Mother drinks</td>
<td>-0.025 (0.014)<sup>*</sup></td>
<td>-0.005 (0.003)</td>
<td>-0.008 (0.005)</td>
<td>0.002 (0.024)</td>
<td>-0.001 (0.003)</td>
<td>0.001 (0.003)</td>
<td>0.003 (0.005)</td>
</tr>
<tr>
<td>Mother’s BMI</td>
<td>-0.633 (0.163)<sup>**</sup></td>
<td>-0.145 (0.039)<sup>**</sup></td>
<td>-0.285 (0.055)<sup>**</sup></td>
<td>1.704 (0.283)<sup>**</sup></td>
<td>0.192 (0.035)<sup>**</sup></td>
<td>0.090 (0.032)<sup>**</sup></td>
<td>-0.247 (0.049)<sup>**</sup></td>
</tr>
<tr>
<td>Constant</td>
<td>15.412 (1.169)<sup>**</sup></td>
<td></td>
<td>4.082 (0.450)<sup>**</sup></td>
<td>26.717 (2.414)<sup>**</sup></td>
<td></td>
<td></td>
<td>1.446 (0.478)<sup>**</sup></td>
</tr>
<tr>
<td>Observations</td>
<td>1173</td>
<td>1173</td>
<td>1136</td>
<td>1138</td>
<td>1138</td>
<td>1532</td>
<td>1463</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.081</td>
<td>0.124</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td>0.220</td>
</tr>
</tbody>
</table>

I regress adoptee’s outcome on a set of the adoptive family characteristics. Each column is a separate regression. Columns (2), (5), and (6) are probits and δy/δx is reported. A full set of age dummies and dummies for year of admission to Holt are included in all columns.

Robust standard errors in parentheses: I cluster at the family level.

* significant at 5%;
** significant at 1%.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Treatment effects

Table 7 shows treatment effect estimates

Assignment to a small, highly educated family relative to a lesser educated, large family:

- Increases educational attainment by 0.75 years
- Raises $Pr(\text{graduate from college})$ by 16.1 pp
- Raises $Pr(\text{graduate from US News college})$ by 23.1 pp

These are very large estimated effects of family environment
Treatment Effects

TABLE VII

<table>
<thead>
<tr>
<th>Treatment effect</th>
<th>Treatment effect</th>
<th>Nonadoptees: High education small family vs. large, less educated</th>
<th>Effect from a 1 standard deviation change in family environment index</th>
</tr>
</thead>
<tbody>
<tr>
<td>"middle group" of families vs. large, less educated</td>
<td>high education small family vs. large, less educated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child's years of education</td>
<td>0.314 (0.226)</td>
<td>0.749 (0.245)**</td>
<td>2.157 (0.264)**</td>
</tr>
<tr>
<td>Child has 4+ years college</td>
<td>0.060 (0.056)</td>
<td>0.161 (0.057)**</td>
<td>0.317 (0.031)**</td>
</tr>
<tr>
<td>Log child's household income</td>
<td>0.071 (0.081)</td>
<td>0.113 (0.089)</td>
<td>0.210 (0.089)*</td>
</tr>
<tr>
<td>Child four-year college ranked by US News</td>
<td>0.082 (0.052)</td>
<td>0.231 (0.060)**</td>
<td>0.365 (0.052)**</td>
</tr>
<tr>
<td>Acceptance rate of child's college</td>
<td>-0.007 (0.035)</td>
<td>0.016 (0.036)</td>
<td>-0.053 (0.032)</td>
</tr>
<tr>
<td>Child drinks (yes/no)</td>
<td>0.099 (0.050)*</td>
<td>0.178 (0.049)**</td>
<td>0.229 (0.041)**</td>
</tr>
<tr>
<td>Child smokes (yes/no)</td>
<td>0.013 (0.044)</td>
<td>-0.006 (0.048)</td>
<td>-0.075 (0.024)**</td>
</tr>
<tr>
<td>Child's BMI</td>
<td>-0.509 (0.460)</td>
<td>-0.941 (0.468)*</td>
<td>-0.929 (0.498)</td>
</tr>
<tr>
<td>Child overweight</td>
<td>-0.030 (0.047)</td>
<td>-0.077 (0.045)</td>
<td>-0.088 (0.048)</td>
</tr>
<tr>
<td>Child obese</td>
<td>-0.020 (0.023)</td>
<td>-0.044 (0.018)*</td>
<td>-0.037 (0.018)*</td>
</tr>
<tr>
<td>Child has asthma</td>
<td>-0.005 (0.028)</td>
<td>0.013 (0.031)</td>
<td>-0.005 (0.034)</td>
</tr>
<tr>
<td>Number of children</td>
<td>-0.070 (0.099)</td>
<td>-0.199 (0.103)*</td>
<td>-0.580 (0.132)**</td>
</tr>
<tr>
<td>Child is married</td>
<td>0.014 (0.050)</td>
<td>0.000 (0.056)</td>
<td>-0.092 (0.053)</td>
</tr>
</tbody>
</table>

I split the sample into three groups: High education small families are defined as those with three or fewer children in which both the mother and father have a college degree (Type 1). Twenty-seven percent of adoptees are assigned to such a family. Large lesser educated families are defined as those with four or more children and where neither parent has a college degree (Type 3). Thirteen percent of adoptees are assigned to such a family. The remaining families (which are either small or have a parent with a college degree) are Type 2. Column (1) shows the coefficient on the dummy for assignment to Type 2 relative to Group 3. Column (2) shows the coefficient on the dummy for assignment to Type 1 (small high education) relative to Type 3 (large less educated). Column (3) shows this Type 1 versus 3 "effect" for the non-adoptees. In each row, the effects in Columns (1) and (2) are estimated together with a single regression while Column (3) uses a separate regression. Column (4) shows the effect for the adoptees from one standard deviation move in an index of shared family environment. This is calculated by taking the square root of the variance share explained by shared family environment in the previous table and multiplying by the standard deviation of the outcome variable: that is, $R \times \sigma_e = \sigma_{\text{nat}} = \text{predicted effect on the outcome from a one standard deviation change in an index of family environment.}$ Standard errors are corrected for within family correlation (1 cluster by family).
Transmission coefficients

Table 8:

- Mother’s education: 0.09 years for adoptees, 0.32 years for non-adoptees ⇒ 28% nurture
- No adoptee transmission for BMI, height
- Drinking transmissions nearly equal
Transmission coefficients

TABLE VIII
Transmission Coefficients from Parents to Children for Adoptees and Nonadoptees

<table>
<thead>
<tr>
<th></th>
<th>Adoptees’ Transmission coefficient</th>
<th>Nonadoptees’ transmission coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of education (mother to child)</td>
<td>0.089 (0.029)a**</td>
<td>0.315 (0.038)**</td>
</tr>
<tr>
<td>Has 4+ years college (mother to child)</td>
<td>0.102 (0.034)**</td>
<td>0.302 (0.037)**</td>
</tr>
<tr>
<td>Log household income (parents to child)</td>
<td>0.186 (0.111)</td>
<td>0.246 (0.080)**</td>
</tr>
<tr>
<td>Height inches (mother to child)</td>
<td>-0.004 (0.034)</td>
<td>0.491 (0.049)**</td>
</tr>
<tr>
<td>Is obese (mother to child)</td>
<td>0.003 (0.020)</td>
<td>0.108 (0.034)**</td>
</tr>
<tr>
<td>Is overweight (mother to child)</td>
<td>-0.026 (0.029)</td>
<td>0.174 (0.037)**</td>
</tr>
<tr>
<td>BMI (mother to child)</td>
<td>0.002 (0.025)</td>
<td>0.221 (0.045)**</td>
</tr>
<tr>
<td>Smokes (0–1) (mother to child)</td>
<td>0.132 (0.088)</td>
<td>0.108 (0.115)</td>
</tr>
<tr>
<td>Drinks (0–1) (mother to child)</td>
<td>0.210 (0.033)**</td>
<td>0.244 (0.038)**</td>
</tr>
</tbody>
</table>

I regress the child’s outcome on the corresponding outcome for the mother (or in the case of income, the parents). Each cell is from a separate regression which also includes age dummies, dummies for year of admission to Holt, and a dummy for the child being male. For income and education regressions I restrict the sample to children ages 25+. For log (income), I attempt to correct for measurement error in parents’ income by instrumenting for the survey measure of parents’ income using the parents’ income measure reported in Holt records.

a Robust standard errors in parentheses: I cluster at the family level.
* significant at 5%;
** significant at 1%.
Useful point of interpretation

One interpretation: US black-white gap in years of schooling and college completion could - based on his results - be produced by a one standard deviation change in family environment

- Is the black-white family gap one standard deviation?
- If so, could suffice to explain b-w educational attainment gap
1. Regression analysis using adoptees
 - Sacerdote (2007)
 - Björkland, Lindahl, and Plug (2006)

2. Natural experiment/IV estimates
 - Black, Devereux, and Salvanes (2005)
 - Parental education and infant health

4. Looking ahead
Björkland, Lindahl, and Plug (2006)

- Administrative data from Statistics Sweden
- Large sample of adoptees
- Unique aspect: data on both biological, adoptive parents
- Do not have random assignment
 - Matching via geography?
 - Cross-checks with Sacerdote helpful here
- Argue you can separate genetics and prenatal environment:
 - Genetics: fathers/mothers equally important
 - Prenatal conditions: father’s behavior doesn’t matter (?)
 - Father’s characteristic measure importance of genetics
 - Father/mother difference measures importance of prenatal
 - Important b/c argue prenatal looks small/unimportant
Linear models

\[Y_{i}^{ac} = \alpha_0 + \alpha_1 Y_{j}^{bp} + \alpha_2 Y_{i}^{ap} + \nu_{i}^{ac} \]

- \(j \) subscripts family in which the child is born
- \(i \) subscripts family in which the child is adopted and raised
- Interpreting \(\alpha_1 \) and \(\alpha_2 \) requires random assignment
- Table 2 presents estimates
TABLE II
Estimated Transmission Coefficients in Linear Models

<table>
<thead>
<tr>
<th></th>
<th>Years of schooling</th>
<th>University</th>
<th>Earnings</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Own-birth children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio father</td>
<td>.240**</td>
<td>.170**</td>
<td>.339**</td>
<td>.237**</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.004)</td>
<td>(.004)</td>
</tr>
<tr>
<td>Bio mother</td>
<td>.243**</td>
<td>.158**</td>
<td>.337**</td>
<td>.246**</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.004)</td>
<td>(.004)</td>
</tr>
<tr>
<td>Adopted children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio father</td>
<td>.113**</td>
<td>.094**</td>
<td>.184**</td>
<td>.148**</td>
</tr>
<tr>
<td></td>
<td>(.016)</td>
<td>(.016)</td>
<td>(.036)</td>
<td>(.036)</td>
</tr>
<tr>
<td>Bio mother</td>
<td>.132**</td>
<td>.101**</td>
<td>.261**</td>
<td>.229**</td>
</tr>
<tr>
<td></td>
<td>(.017)</td>
<td>(.017)</td>
<td>(.034)</td>
<td>(.034)</td>
</tr>
<tr>
<td>Adoptive father</td>
<td>.114**</td>
<td>.094**</td>
<td>.165**</td>
<td>.102**</td>
</tr>
<tr>
<td></td>
<td>(.013)</td>
<td>(.014)</td>
<td>(.024)</td>
<td>(.026)</td>
</tr>
<tr>
<td>Adoptive mother</td>
<td>.074**</td>
<td>.021**</td>
<td>.145**</td>
<td>.097**</td>
</tr>
<tr>
<td></td>
<td>(.014)</td>
<td>(.015)</td>
<td>(.024)</td>
<td>(.026)</td>
</tr>
<tr>
<td>Sum of estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for bio and</td>
<td>.227**</td>
<td>.188**</td>
<td>.349**</td>
<td>.249**</td>
</tr>
<tr>
<td>adoptive fathers</td>
<td>(.019)</td>
<td>(.029)</td>
<td>(.040)</td>
<td>(.059)</td>
</tr>
<tr>
<td>Sum of estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for bio and</td>
<td>.207**</td>
<td>.122**</td>
<td>.406**</td>
<td>.326**</td>
</tr>
<tr>
<td>adoptive mothers</td>
<td>(.021)</td>
<td>(.016)</td>
<td>(.039)</td>
<td>(.029)</td>
</tr>
</tbody>
</table>

Standard errors are shown in parentheses; * indicates significance at 5 percent level, and ** at 1 percent level. All specifications include controls for the child’s gender, 4 birth cohort dummies for the child, 8 birth cohort dummies for biological/adoptive father/mother, and 25 region dummies of where the biological/adoptive family lived in 1965. The numbers of observations in the second panel for own-birth and adopted children are 94,079/2,125 in columns (1)-(6), 87,079/1,780 in column (7) and 91,932/1,976 in column (8).
Linear models

The authors draw four conclusions from these results:

1. Biological parents matter
2. Adoptive parents matter
3. Comparing biological and adoptive parent:
 - Mother matters mostly pre-birth
 - Fathers matter equally pre- and post-birth
4. Total impact of adoptive, biological parents’ resources on outcomes of adoptive children is remarkably similar to impact of biological parent’s outcomes for biological children

Where available, estimates line up well with Sacerdote’s estimates
Non-linear models

\[Y_{i}^{ac} = \alpha_0 + \alpha_1 Y_{j}^{bp} + \alpha_2 Y_{i}^{ap} \alpha_3 Y_{j}^{bp} Y_{i}^{ap} + \upsilon_{i}^{ac} \]

- \(\alpha_3 \) positive if birth/adoptive family backgrounds complements
- Non-adoptees: squared parental characteristics
- Table 4 presents estimates
 - Positive, strong quadratic terms (slight convexity)
 - Some evidence of interactions
Non-linear models

<table>
<thead>
<tr>
<th></th>
<th>Years of schooling</th>
<th>University</th>
<th>Earnings</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fathers (1)</td>
<td>Fathers (5)</td>
<td>Fathers (7)</td>
<td>Fathers (9)</td>
</tr>
<tr>
<td>Own-birth children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio parent</td>
<td>-.009 (.015)</td>
<td>-.807** (.075)</td>
<td></td>
<td>-.938** (.064)</td>
</tr>
<tr>
<td>Bio parent squared</td>
<td>.011** (.001)</td>
<td>.069** (.005)</td>
<td></td>
<td>.077** (.004)</td>
</tr>
<tr>
<td>Adopted children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio parent</td>
<td>.050 (.051)</td>
<td>.199** (.045)</td>
<td>-.187 (.108)</td>
<td>-1.164* (.525)</td>
</tr>
<tr>
<td>Bio parent squared</td>
<td>.015* (.006)</td>
<td>.045 (.021)</td>
<td>.170** (.025)</td>
<td>.293* (.125)</td>
</tr>
<tr>
<td>Adoptive parent</td>
<td>.061 (.043)</td>
<td>.108** (.026)</td>
<td>-.293* (.125)</td>
<td>-0.995* (.501)</td>
</tr>
<tr>
<td>Bio parent squared</td>
<td>.004 (.004)</td>
<td>.025 (.005)</td>
<td>.170** (.025)</td>
<td>.293* (.125)</td>
</tr>
<tr>
<td>Bio parent * Adoptive parent</td>
<td>.006 (.004)</td>
<td>.043 (.005)</td>
<td>.043** (.015)</td>
<td>.156* (.067)</td>
</tr>
</tbody>
</table>

Standard errors are shown in parentheses; * indicates significance at 5 percent level, and ** at 1 percent level. All specifications include controls for the child’s gender, 4 birth cohort dummies for the child, 8 birth cohort dummies for biological/adoptive father/mother, and 25 region dummies of where the biological/adoptive family lived in 1965. The numbers of observations in the second panel for own-birth and adopted children are 94,079/2,125 in columns (1)-(6), 87,079/1,780 in column (7), and 91,932/1,976 in column (8).
Regression analysis using adoptees
- Sacerdote (2007)
- Björkland, Lindahl, and Plug (2006)

Natural experiment/IV estimates
- Black, Devereux, and Salvanes (2005)
- Parental education and infant health

Within-US geography of intergenerational mobility: Chetty et al. (2014)

Looking ahead
Natural experiment/IV estimates

Estimating causal effects of specific channels

- Identify variation in e.g. parental education or income that is plausibly unrelated to other parental characteristics
- Almond and Currie (2011): income from welfare programs
- Education: Black, Devereux, and Salvanes (2005)
- Black and Devereux (2011) review other education papers
1. Regression analysis using adoptees
 - Sacerdote (2007)
 - Björkland, Lindahl, and Plug (2006)

2. Natural experiment/IV estimates
 - Black, Devereux, and Salvanes (2005)
 - Parental education and infant health

4. Looking ahead
Parents with higher levels of education have children with higher levels of education. Why is this?

- Selection: ‘type’ of parent has ‘type’ of child
- Causation: obtaining more education changes parent ‘type’

Black et al. examine this question in the context of a (drastic) change in compulsory schooling laws in Norway in the 1960s.
Empirical strategy

- Pre-reform: 7th grade required
- Post-reform: 9th grade required
- Timing of reform staggered across municipalities
- Norway register data
- 2SLS using reform as an instrument (used in prior papers)

\[S_1 = \beta_0 + \beta_1 S_0 + \beta_2 \text{AGE}_1 + \beta_3 \text{AGE}_0 + \beta_4 M_0 + \varepsilon \]
\[S_0 = \alpha_0 + \alpha_1 \text{REFORM}_0 + \alpha_2 \text{AGE}_1 + \alpha_3 \text{AGE}_0 + \alpha_4 M_0 + \nu \]
First stage: Table 2

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3.5%</td>
<td>1.2%</td>
</tr>
<tr>
<td>8</td>
<td>8.9%</td>
<td>1.6%</td>
</tr>
<tr>
<td>9</td>
<td>3.4%</td>
<td>12.9%</td>
</tr>
<tr>
<td>10</td>
<td>29.6%</td>
<td>26.6%</td>
</tr>
<tr>
<td>11</td>
<td>8.5%</td>
<td>8.8%</td>
</tr>
<tr>
<td>12</td>
<td>17.2%</td>
<td>19.1%</td>
</tr>
<tr>
<td>13</td>
<td>6.7%</td>
<td>6.7%</td>
</tr>
<tr>
<td>14</td>
<td>5.4%</td>
<td>5.8%</td>
</tr>
<tr>
<td>15</td>
<td>2.7%</td>
<td>3.4%</td>
</tr>
<tr>
<td>16+</td>
<td>14.2%</td>
<td>14.1%</td>
</tr>
<tr>
<td>N</td>
<td>89,320</td>
<td>92,227</td>
</tr>
</tbody>
</table>

Notes: Before indicates education distribution of cohorts in the two years prior to the reform, while After indicates the distribution of those two years post reform. Note that because the reform occurred in different municipalities at different times, the actual year of the reform varies by municipality.

Courtesy of Sandra Black, Paul Devereux, Kjell Salvanes, and the American Economic Association. Used with permission.
First stage: Table 3a

<table>
<thead>
<tr>
<th></th>
<th>Full sample of parents</th>
<th>Parents’ education <10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mother’s education</td>
<td>Father’s education</td>
</tr>
<tr>
<td>All</td>
<td>0.142* (.029)</td>
<td>0.192* (.042)</td>
</tr>
<tr>
<td>Sons</td>
<td>0.127* (.035)</td>
<td>0.196* (.051)</td>
</tr>
<tr>
<td>Daughters</td>
<td>0.161* (.036)</td>
<td>0.197* (.050)</td>
</tr>
</tbody>
</table>

Notes: Each estimate represents the coefficient from a different regression. Robust standard errors in parentheses. First stage also includes dummies for parent’s age, parent’s municipality, and child’s age. * Significant at 5-percent level.
As expected, positive OLS of parents', childrens' education

First stage weak in full sample: focus on restricted sample
 - Similar OLS, 2SLS estimates
 - 2SLS estimates more precise

IV suggests weak evidence of a causal effect
OLS and IV: Table 3

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: Children’s education</th>
<th>Full sample</th>
<th>Parent’s education <10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>Mother—all</td>
<td>0.237*</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.139)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 143,579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother–son</td>
<td>0.212*</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.185)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 73,663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother–daughter</td>
<td>0.264*</td>
<td>-0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.186)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 69,916</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father—all</td>
<td>0.217*</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.132)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 96,275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father–son</td>
<td>0.209*</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.171)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 49,492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father–daughter</td>
<td>0.226*</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.186)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 46,783</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Sample includes children aged 25–35. Robust standard errors in parentheses. Each estimate represents the coefficient from a different regression. All specifications include dummies for parent’s age, parent’s municipality and child’s age.

* Significant at 5-percent level.

Courtesy of Sandra Black, Paul Devereux, Kjell Salvanes, and the American Economic Association. Used with permission.
First stage and reduced form: Figure 1

Figure 1. Effect of Norwegian Education Reform on Education First Stage (Effect on Parents) Reduced Form (Effect on Children)

Notes: Estimated on the restricted sample. Lines represent average education for each group with cohort and municipality effects taken out; time zero represents the year of the reform.

Courtesy of Sandra Black, Paul Devereux, Kjell Salvanes, and the American Economic Association. Used with permission.
Black, Devereux, and Salvanes (2005)

Authors conclude: limited support for intergenerational spillovers as a compelling argument for compulsory schooling laws
1 Regression analysis using adoptees
 • Sacerdote (2007)
 • Björkland, Lindahl, and Plug (2006)

2 Natural experiment/IV estimates
 • Black, Devereux, and Salvanes (2005)
 • Parental education and infant health

3 Within-US geography of intergenerational mobility: Chetty et al. (2014)

4 Looking ahead
Parental education and infant health

- Effect of parental education on infant health
 - Relevant to mobility because of evidence that infant health has a positive causal effect on later adult outcomes (next class)

- McCrary-Royer (2011): RD on school entry start date
 - No effect of education on fertility, age at first birth
 - Small, statistically insignificant effects on birth weight

- Currie-Moretti (2003): college openings
 - Reduces fertility, increases birth weight
 - With McCrary-Royer, suggests important heterogeneity

More on early life health next lecture
1. Regression analysis using adoptees
 - Sacerdote (2007)
 - Björkland, Lindahl, and Plug (2006)

2. Natural experiment/IV estimates
 - Black, Devereux, and Salvanes (2005)
 - Parental education and infant health

4. Looking ahead
Within-US geography of intergenerational mobility

- 1980-1982 birth cohorts
- Parental and child income data measured by tax records
- Log-log specification for intergenerational income elasticity discards many families with zero income; alternative rank-rank measure
Rank-rank: Figure 2

Roughly linear: 10 pctl increase in parent income rank
⇒ 3.4 pctl increase in child income rank
Spatial variation

- Commuting zones at age 16 (ZIP on parents’ tax return)
- Two measures:
 1. Relative mobility: difference in outcomes between children from top vs. bottom income families within a CZ
 2. Absolute mobility: expected rank of children with parents at percentile p in CZ c
Absolute mobility: Figure 6

- Large regional variation + within region variation

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Univariate correlations: Figure 8

Figure VIII

Correlates of Spatial Variation in Upward Mobility

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Regression analysis using adoptees
- Sacerdote (2007)
- Björkland, Lindahl, and Plug (2006)

Natural experiment/IV estimates
- Black, Devereux, and Salvanes (2005)
- Parental education and infant health

Within-US geography of intergenerational mobility: Chetty et al. (2014)

Looking ahead
Looking ahead

Early life determinants of long-run outcomes

- Prenatal environments
- Early childhood environments
- Policy responses