Graph-theoretic Models

Eric Grimson

MIT Department Of Electrical Engineering and Computer Science
Relevant Reading for Today’s Lecture

- Section 12.2
Computational Models

- Programs that help us understand the world and solve practical problems
- Saw how we could map the informal problem of choosing what to eat into an optimization problem, and how we could design a program to solve it
- Now want to look at class of models called graphs
What’s a Graph?

- **Set of nodes (vertices)**
 - Might have properties associated with them

- **Set of edges (arcs) each consisting of a pair of nodes**
 - Undirected (graph)
 - Directed (digraph)
 - Source (parent) and destination (child) nodes
 - Unweighted or weighted
What’s a Graph?

- Set of nodes (vertices)
 - Might have properties associated with them

- Set of edges (arcs) each consisting of a pair of nodes
 - Undirected (graph)
 - Directed (digraph)
 - Source (parent) and destination (child) nodes
 - Unweighted or weighted
Why Graphs?

- To capture useful relationships among entities
 - Rail links between Paris and London
 - How the atoms in a molecule are related to one another
 - Ancestral relationships
Trees: An Important Special Case

- A special kind of directed graph in which any pair of nodes is connected by a single path
 - Recall the search trees we used to solve knapsack problem
Why Graphs Are So Useful

- World is full of networks based on relationships
 - Computer networks
 - Transportation networks
 - Financial networks
 - Sewer or water networks
 - Political networks
 - Criminal networks
 - Social networks
 - Etc.

 Analysis of “Wizard of Oz”:
 - size of node reflects number of scenes in which character shares dialogue
 - color of clusters reflects natural interactions with each other but not others

Wizard of Oz dialogue map © Mapr.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
Why Graphs Are So Useful

- We will see that not only do graphs capture relationships in connected networks of elements, they also support inference on those structures
 - Finding sequences of links between elements – is there a path from A to B
 - Finding the least expensive path between elements (aka shortest path problem)
 - Partitioning the graph into sets of connected elements (aka graph partition problem)
 - Finding the most efficient way to separate sets of connected elements (aka the min-cut/max-flow problem)
Graph Theory Saves Me Time Every Day

Map image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
Getting Eric to his Office

- Model road system using a digraph
 - Nodes: points where roads end or meet
 - Edges: connections between points
 - Each edge has a weight
 - Expected time to get from source node to destination node for that edge
 - Distance between source and destination nodes
 - Average speed of travel between source and destination nodes

- Solve a graph optimization problem
 - Shortest weighted path between my house and my office
First Reported Use of Graph Theory

- Bridges of Königsberg (1735)
- Possible to take a walk that traverses each of the 7 bridges exactly once?
Leonhard Euler’s Model

- Each island a node
- Each bridge an undirected edge
- Model abstracts away irrelevant details
 - Size of islands
 - Length of bridges

- Is there a path that contains each edge exactly once?
 - No!
Implementing and using graphs

- Building graphs
 - Nodes
 - Edges
 - Stitching together to make graphs

- Using graphs
 - Searching for paths between nodes
 - Searching for optimal paths between nodes
class Node(object):
 def __init__(self, name):
 """Assumes name is a string"""
 self.name = name
 def getName(self):
 return self.name
 def __str__(self):
 return self.name
class Edge(object):
 def __init__(self, src, dest):
 """Assumes src and dest are nodes"""
 self.src = src
 self.dest = dest
 def getSource(self):
 return self.src
 def getDestination(self):
 return self.dest
 def __str__(self):
 return self.src.getName() + '->' + self.dest.getName()
Common Representations of Digraphs

- **Digraph is a directed graph**
 - Edges pass in one direction only

- **Adjacency matrix**
 - **Rows**: source nodes
 - **Columns**: destination nodes
 - $Cell[s, d] = 1$ if there is an edge from s to d
 - $= 0$ otherwise
 - Note that in digraph, matrix is **not** symmetric

- **Adjacency list**
 - Associate with each node a list of destination nodes
Class Digraph, part 1

class Digraph(object):
 """edges is a dict mapping each node to a list of its children"""

def __init__(self):
 self.edges = {}

def addNode(self, node):
 if node in self.edges:
 raise ValueError('Duplicate node')
 else:
 self.edges[node] = []

def addEdge(self, edge):
 src = edge.getSource()
 dest = edge.getDestination()
 if not (src in self.edges and dest in self.edges):
 raise ValueError('Node not in graph')
 self.edges[src].append(dest)
Class Digraph, part 2

```python
def childrenOf(self, node):
    return self.edges[node]

def hasNode(self, node):
    return node in self.edges

def getNode(self, name):
    for n in self.edges:
        if n.getName() == name:
            return n
    raise NameError(name)

def __str__(self):
    result = ''
    for src in self.edges:
        for dest in self.edges[src]:
            result = result + src.getName() + '->' + dest.getName() + '\n'
    return result[:-1] #omit final newline
```
Class Graph

class Graph(Digraph):
 def addEdge(self, edge):
 Digraph.addEdge(self, edge)
 rev = Edge(edge.getDestination(), edge.getSource())
 Digraph.addEdge(self, rev)

- Graph does not have directionality associated with an edge
 - Edges allow passage in either direction

- Why is Graph a subclass of Digraph?

- Remember the substitution rule?
 - If client code works correctly using an instance of the supertype, it should also work correctly when an instance of the subtype is substituted for the instance of the supertype

- Any program that works with a Digraph will also work with a Graph (but not vice versa)
A Classic Graph Optimization Problem

- Shortest path from n1 to n2
 - Shortest sequence of edges such that
 - Source node of first edge is n1
 - Destination of last edge is n2
 - For edges, e1 and e2, in the sequence, if e2 follows e1 in the sequence, the source of e2 is the destination of e1

- Shortest weighted path
 - Minimize the sum of the weights of the edges in the path
Some Shortest Path Problems

- Finding a route from one city to another
- Designing communication networks
- Finding a path for a molecule through a chemical labyrinth
- ...

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
An Example

Adjacency List
- Boston: Providence, New York
- Providence: Boston, New York
- New York: Chicago
- Chicago: Denver, Phoenix
- Denver: Phoenix, New York
- Los Angeles: Boston
- Phoenix:
def buildCityGraph(graphType):
 g = graphType()
 for name in ('Boston', 'Providence', 'New York', 'Chicago', 'Denver', 'Phoenix', 'Los Angeles'): # Create 7 nodes
 g.addNode(Node(name))
 g.addEdge(Edge(g.getNode('Boston'), g.getNode('Providence')))
 g.addEdge(Edge(g.getNode('Boston'), g.getNode('New York')))
 g.addEdge(Edge(g.getNode('Providence'), g.getNode('Boston')))
 g.addEdge(Edge(g.getNode('Providence'), g.getNode('New York')))
 g.addEdge(Edge(g.getNode('New York'), g.getNode('Chicago')))
 g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Denver')))
 g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Phoenix')))
 g.addEdge(Edge(g.getNode('Denver'), g.getNode('Phoenix')))
 g.addEdge(Edge(g.getNode('Denver'), g.getNode('New York')))
 g.addEdge(Edge(g.getNode('Los Angeles'), g.getNode('Boston')))}
Finding the Shortest Path

- Algorithm 1, depth-first search (DFS)
- Similar to left-first depth-first method of enumerating a search tree (Lecture 2)
- Main difference is that graph might have cycles, so we must keep track of what nodes we have visited to avoid going in infinite loops

Note that we are using divide-and-conquer: if we can find a path from a source to an intermediate node, and a path from the intermediate node to the destination, the combination is a path from source to destination
Depth First Search

- Start at an initial node
- Consider all the edges that leave that node, in some order
- Follow the first edge, and check to see if at goal node
- If not, repeat the process from new node
- Continue until either find goal node, or run out of options
 - When run out of options, backtrack to the previous node and try the next edge, repeating this process
Depth First Search (DFS)

def DFS(graph, start, end, path, shortest, toPrint = False):
 path = path + [start]
 if toPrint:
 print('Current DFS path:', printPath(path))
 if start == end:
 return path
 for node in graph.childrenOf(start):
 if node not in path: # avoid cycles
 if shortest == None or len(path) < len(shortest):
 newPath = DFS(graph, node, end, path, shortest, toPrint)
 if newPath != None:
 shortest = newPath
 elif toPrint:
 print('Already visited', node)
 return shortest

def shortestPath(graph, start, end, toPrint = False):
 return DFS(graph, start, end, [], None, toPrint)

DFS called from a wrapper function: shortestPath

Gets recursion started properly

Provides appropriate abstraction
Test DFS

def testSP(source, destination):
g = buildCityGraph(DiGraph)
sp = shortestPath(g, g.getNode(source), g.getNode(destination),
 toPrint = True)
if sp != None:
 print('Shortest path from', source, 'to',
 destination, 'is', printPath(sp))
else:
 print('There is no path from', source, 'to', destination)

testSP('Boston', 'Chicago')
An Example

Adjacency List
Boston: Providence, New York
Providence: Boston, New York
New York: Chicago
Chicago: Denver, Phoenix
Denver: Phoenix, New York
Los Angeles: Boston
Phoenix:
Output (Chicago to Boston)

Current DFS path: Chicago
Current DFS path: Chicago->Denver
Current DFS path: Chicago->Denver->Phoenix
Current DFS path: Chicago->Denver->New York
Already visited Chicago
Current DFS path: Chicago->Phoenix
There is no path from Chicago to Boston
Output (Boston to Phoenix)

Current DFS path: Boston
Current DFS path: Boston->Providence
Already visited Boston
Current DFS path: Boston->Providence->New York
Current DFS path: Boston->Providence->New York->Chicago
Current DFS path: Boston->Providence->New York->Chicago->Denver
Current DFS path: Boston->Providence->New York->Chicago->Denver->Phoenix Found path
Already visited New York
Current DFS path: Boston->Providence->New York->Chicago->Phoenix Found a shorter path
Current DFS path: Boston->New York
Current DFS path: Boston->New York->Chicago
Current DFS path: Boston->New York->Chicago->Denver
Current DFS path: Boston->New York->Chicago->Denver->Phoenix Found a “shorter” path
Already visited New York
Current DFS path: Boston->New York->Chicago->Phoenix Found a shorter path
Shortest path from Boston to Phoenix is Boston->New York->Chicago->Denver->Phoenix
Breadth First Search

- Start at an initial node
- Consider all the edges that leave that node, in some order
- Follow the first edge, and check to see if at goal node
- If not, try the next edge from the current node
- Continue until either find goal node, or run out of options
 - When run out of edge options, move to next node at same distance from start, and repeat
 - When run out of node options, move to next level in the graph (all nodes one step further from start), and repeat
Algorithm 2: Breadth-first Search (BFS)

def BFS(graph, start, end, toPrint = False):
 initPath = [start]
 pathQueue = [initPath]
 while len(pathQueue) != 0:
 # Get and remove oldest element in pathQueue
 tmpPath = pathQueue.pop(0)
 if toPrint:
 print('Current BFS path:', printPath(tmpPath))
 lastNode = tmpPath[-1]
 if lastNode == end:
 return tmpPath
 for nextNode in graph.childrenOf(lastNode):
 if nextNode not in tmpPath:
 newPath = tmpPath + [nextNode]
 pathQueue.append(newPath)
 return None

Explore all paths with n hops before exploring any path with more than n hops
Output (Boston to Phoenix)

Current BFS path: Boston
Current BFS path: Boston->Providence
Current BFS path: Boston->New York
Current BFS path: Boston->Providence->New York
Current BFS path: Boston->New York->Chicago
Current BFS path: Boston->Providence->New York->Chicago
Current BFS path: Boston->New York->Chicago->Denver
Current BFS path: Boston->New York->Chicago->Phoenix
Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix
Output (Boston to Phoenix)

Note that we skip a path that revisits a node

Current BFS path: Boston
Current BFS path: Boston->Providence
Current BFS path: Boston->New York
Current BFS path: Boston->Providence->New York
Current BFS path: Boston->New York->Chicago
Current BFS path: Boston->Providence->New York->Chicago
Current BFS path: Boston->New York->Chicago->Denver
Current BFS path: Boston->New York->Chicago->Phoenix
Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix
What About a Weighted Shortest Path

- Want to minimize the sum of the weights of the edges, not the number of edges
- DFS can be easily modified to do this
- BFS cannot, since shortest weighted path may have more than the minimum number of hops
Recap

- Graphs are cool
 - Best way to create a model of many things
 - Capture relationships among objects
 - Many important problems can be posed as graph optimization problems we already know how to solve

- Depth-first and breadth-first search are important algorithms
 - Can be used to solve many problems
6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.