Coming up next...

• Sorting
• Scenic Tour: Insertion Sort, Selection Sort, Merge Sort
• New Kid on the Block: Merge Sort
• Priority Queues
• Heap-Based Implementation
Sorting

• Input: array a of N keys
• Output: a permutation a_s of a such that a_s[k] < a_s[k+1]
• Stable sorting:
Sorting

• Maybe the oldest problem in CS
• Reflects our growing understanding of algorithm and data structures
• Who gives a damn?
• All those database tools out there
Sorting Algorithms: Criteria

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>That’s what 6.006 is about</td>
</tr>
<tr>
<td>Auxiliary Memory</td>
<td>External sorting, memory isn’t that cheap</td>
</tr>
<tr>
<td>Simple Method</td>
<td>You’re learning / coding / debugging / analyzing it</td>
</tr>
<tr>
<td># comparisons, data moving</td>
<td>Keys may be large (strings) or slow to move (flash memory)</td>
</tr>
</tbody>
</table>
Insertion Sort

- Base: $a[0:1]$ has 1 element \Rightarrow is sorted

- Induction: $a[0:k]$ is sorted, want to grow to $a[0:k+1]$ sorted
 - find position of $a[k+1]$ in $a[0:k]$
 - insert $a[k+1]$ in $a[0:k]$

```
5 8 2 7 1 4 3 6
5 8 2 7 1 4 3 6
2 5 8 7 1 4 3 6
2 5 7 8 1 4 3 6
1 2 5 7 8 4 3 6
1 2 4 5 7 8 4 3 6
1 2 4 5 7 8 3 6
1 2 3 4 5 6 7 8
```
Insertion Sort: Costs

- Find position for \(a[k+1]\) in \(a[0:k]\) - \(O(\log(k))\)
 - use binary search

- Insert \(a[k+1]\) in \(a[0:k]\): \(O(k)\)
 - shift elements

- Total cost: \(O(N \cdot \log(N)) + O(N^2) = O(N^2)\)

- Pros:
 - Optimal number of comparisons
 - \(O(1)\) extra memory (no auxiliary arrays)

- Cons:
 - Moves elements around a lot
Selection Sort

- Base case: \(a[0:0] \) has the smallest 0 elements in \(a \)
- Induction: \(a[0:k] \) has the smallest \(k \) elements in \(a \), sorted; want to expand to \(a[k+1] \)
 - find \(\text{min}(a[k+1:N]) \)
 - swap it with \(a[k+1] \)

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Selection Sort: Costs

- find minimum in $a[k+1:N]) - O(N-k)$
 - scan every element
- swap with $a[k] - O(1)$
 - need help for this?
- Total cost: $O(N^2) + O(N) = O(N^2)$

Pros:
- Optimal in terms of moving data around
- $O(1)$ extra memory (no auxiliary arrays)

Cons:
- Compares a lot
Merge-Sort

1. Divide
 - Break into 2 sublists

2. Conquer
 - 1-elements lists are sorted

3. Profit
 - Merge sorted sublists

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

There is no step 6
There is no step 7
There is no step 8
Merge-Sort: Cost

- You should be ashamed of if you don’t know!
- \(T(N) = 2T(N/2) + \Theta(N) \)
- Recursion tree
 - \(O(\log(N)) \) levels, \(O(N) \) work / level
 - Total cost: \(O(N \cdot \log(N)) \)

- Pros:
 - Optimal number of comparisons
 - Fast

- Cons:
 - \(O(N) \) extra memory (for merging)
BST Sort

- Build a BST out of the keys

- Use inorder traversal to obtain the keys in sorted order

- Or go to minimum(), then call successor() until it returns None
BST Sort: Cost

- Building the BST - $O(N \cdot \log(N))$
 - Use a balanced tree
- Traversing the BST - $O(N)$
 - Even if not balanced
- Total cost: $O(N \cdot \log(N))$

- Pros:
 - Fast (asymptotically)
- Cons:
 - Large constant
 - $O(N)$ extra memory (left/right pointers)
 - Complex code
Best of Breed Sorting

<table>
<thead>
<tr>
<th></th>
<th>Speed</th>
<th>Auxiliary Memory</th>
<th>Code complexity</th>
<th>Comparisons</th>
<th>Data movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>$O(N \cdot \log(N))$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary Memory</td>
<td></td>
<td>$O(1)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code complexity</td>
<td></td>
<td></td>
<td>Simple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparisons</td>
<td></td>
<td></td>
<td></td>
<td>$O(N \cdot \log(N))$</td>
<td></td>
</tr>
<tr>
<td>Data movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Heap-Sort

<table>
<thead>
<tr>
<th>Property</th>
<th>Complexity</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>(O(N \cdot \log(N)))</td>
<td>✓</td>
</tr>
<tr>
<td>Auxiliary Memory</td>
<td>(O(1))</td>
<td>✓</td>
</tr>
<tr>
<td>Code complexity</td>
<td>Simple</td>
<td>✓</td>
</tr>
<tr>
<td>Comparisons</td>
<td>(O(N \cdot \log(N)))</td>
<td>✓</td>
</tr>
<tr>
<td>Data movement</td>
<td>(O(N))</td>
<td>✗</td>
</tr>
</tbody>
</table>
Heap-Sort uses a... Heap (creative, eh?)

- Max-Heap DT
- Almost complete binary tree
- Root node’s key >= its children’s keys
- Subtrees rooted at children are Max-Heaps as well
Max-Heap Properties

- Very easy to find max. value
- Look at root, doh
- Unlike BSTs, it's very hard to find any other value
- 6 (3rd largest key) at same level as 1 (min. key)
Heaps Inside Arrays

- THIS IS WHY HEAPS ROCK OVER BSTs
- No need to store a heap as a binary tree (left, right, parent pointers)
- Store keys inside array, in level-order traversal
Heaps Inside Arrays

- Work with arrays, think in terms of trees
- Left subtree of 8 is in bold... pretty mind-boggling, eh?
- Prey that you don’t have to debug this
Heaps Inside Arrays

- root index: 1
- left_child(node_index):
 - node_index \cdot 2
- right_child(node_index):
 - node_index \cdot 2 + 1
- parent(node_index):
 - \left\lfloor \frac{node_index}{2} \right\rfloor
Heaps Inside Arrays

- How to recall this
 1. draw the damn heap (see right)
 2. remember the concept (divide / multiply by 2)
 3. work it out with the drawing
Heaps Inside Arrays: Python Perspective

- Lists are the closest thing to array
- Except they grow
 - Just like our growing hashes
 - Amortized $O(1)$ per operation
Messing with Heaps

• Goal:
 1. Change any key
 2. Restore Max-Heap invariants
Messing with Heaps: Percolate

- **Issue**
 - key’s node becomes smaller than children
 - only possible after decreasing a key

- **Solution**
 - percolate (huh??)
Messing with Heaps: Percolate

- Percolate:
 - swap node’s key with max(left child key, right child key)
 - Max-Heap restored locally
 - the child we didn’t touch still roots a Max-Heap
Messing with Heaps: Percolate

- Percolate
- Issue: swapping decreased the key of the child touched
- child might not root a Max-Heap
- Solution: keep percolating
Messing with Heaps: Percolate

- Percolating is finite:
 - leaves are always Max-Heaps

- Percolate cost:
 - \(O(\text{heap height} - \text{node's level})\)
 - \(O(\log(N) - \log(\text{node}))\)
Messing with Heaps: Sift

- **Issue**
 - key’s node becomes larger than parent
 - only possible after increasing a key

- **Solution**
 - sift (huh??)
Messing with Heaps: Sift

- Sift
 - swap node’s key with parent’s key
 - parent’s key was >= node’s key, so must be >= children keys
 - Max-Heap restored for node’s subtree
Messing with Heaps: Sift

- Sift
- Issue: swapping increased the key of the parent
 - parent might not root a Max-Heap
- Solution: keep sifting
Messing with Heaps: Sift

- Sifting is finite:
 - root has no parent, so it can be increased at will

- Sift cost:
 - $O(\text{height})$
 - $O(\log(\text{node}))$
Messing with Heaps

• Update(node, new_key)
 • old_key ← heap[node].key
 • heap[node].key ← new_key
 • if new_key < old_key: sift(node)
 • else: percolate(node)
Messing with Heaps II

- **Goal**
 - Want to shrink or grow the heap

- **Growing:**
 - inserting keys

- **Shrinking:**
 - deleting keys
Messing with Heaps II: One More Node

- Can always insert $-\infty$ at the end of the heap
- Max-Heap will not be violated
- Can only add to the end, otherwise we wouldn't get an (almost) complete binary tree
Messing with Heaps II: One More Node

• Insert any key
• \(-\infty\) at the end of the heap
• change node’s key to desired key
• sift
Messing with Heaps II: One More Node

- Insertion cost
 - insert $-\infty$ at the end of the heap - $O(1)$
 - change node’s key to new key - $O(1)$
 - sift - $O(\log(N))$
- Total cost: $O(\log(N))$
Messing with Heaps II: One More Less Node

- Can always delete last node
- Max-Heap will not be violated
 - It must be the last node, otherwise the binary tree won’t be (almost) complete
Messing with Heaps II: One More Less Node

- Deleting root
 - Replace root key with last key
- Delete last node
- Percolate
Messing with Heaps II: One More Less Node

- Deleting root cost
 - Replace root key with last key - \(O(1)\)
 - Delete last - \(O(1)\)
 - Percolate - \(O(\log(N))\)
- Total cost: \(O(\log(N))\)
Messing with Heaps II: One More Less Node

- Deleting any node
- Change key to $+\infty$
- Sift
- Delete root
Messing with Heaps II: One More Less Node

- Deletion cost
 - Change key to $+\infty$ - $O(1)$
 - Sift - $O(\log(N))$
 - Remove root - $O(\log(N))$
- Total cost: $O(\log(N))$
Heap-Sort: Everything Falls Into Place

- Start with empty heap
- Build the heap: insert $a[0]$... $a[N-1]$
- Build the result: delete root until heap is empty, gets keys sorted in reverse order
- Use a to store both the array and the heap (explained in lecture)
Heap-Sort: Slightly Faster

- Build the heap faster: Max-Heapify
- Explained in lecture
- $O(N)$ instead of $O(N \cdot \log(N))$
- Total time for Heap-Sort stays $O(N \cdot \log(N))$ because of N deletions
- Max-Heapify is very useful later
Priority Queues

• Data Structure
 • `insert(key)` : adds to the queue
 • `max()` : returns the maximum key
 • `delete-max()` : deletes the max key
 • `delete(key)` : deletes the given key

• optional (only needed in some apps)
Priority Queues with Max-Heaps

- Doh? (assuming you paid attention so far)
- Costs (see above line for explanations)
 - insert: $O(\log(N))$
 - max: $O(1)$
 - delete-max: $O(\log(N))$
 - delete: $O(\log(N))$ - only if given the index of the node containing the key
Cool / Smart Problem

• Given an array a of numbers, extract the k largest numbers

• Want good running time for any k
Cool / Smart Problem

• Small cases:
 • \(k = 1 \): scan through the array, find \(N \)
 • \(k \) small
 • try to scale the scan
 • getting to \(O(kN) \), not good
Cool / Smart Problem

• Solution: Heaps!
 • build heap with Max-Heapify
 • delete root k times
 • $O(k \cdot \log(N))$

• Bonus Solution: Selection Trees (we’ll come back to this if we have time)
Discussion: Priority Queue Algorithms

- BSTs
 - store keys in a BST
- Regular Arrays
 - store keys in an array
- Arrays of Buckets
 - a[k] stores a list of keys with value k