6.02 Fall 2012
Lecture #4

• Linear block codes
 • Rectangular codes
 • Hamming codes
Single Link Communication Model

Original source
- Digitize (if needed)
- Source binary digits ("message bits")
- Source coding
- Bit stream

End-host computers

Receiving app/user
- Render/display, etc.
- Source decoding
- Bit stream

Channel Coding (bit error correction)
- Bits

Mapper + Xmit samples
- Signals (Voltages) over physical link

Recv samples + Demapper
- Bits

Channel Decoding (reducing or removing bit errors)
Embedding for Structural Separation

Encode so that the codewords are “far enough” from each other.
Likely error patterns shouldn’t transform one codeword to another.

Code: nodes chosen in hypercube + mapping of message bits to nodes.

If we choose 2^k out of 2^n nodes, it means we can map all k-bit message strings in a space of n-bit codewords.
The code rate is k/n.

single-bit error may cause 00 to be 10 (or 01)
Minimum Hamming Distance of Code vs. Detection & Correction Capabilities

If d is the minimum Hamming distance between codewords, we can:

- **detect all** patterns of up to t bit errors if and only if $d \geq t+1$

- **correct all** patterns of up to t bit errors if and only if $d \geq 2t+1$

- **detect all** patterns of up to t_D bit errors while correcting all patterns of t_C (<t_D) errors if and only if $d \geq t_C + t_D + 1$

e.g.: $d=4$, $t_C=1$, $t_D=2$
Linear Block Codes

Block code: \(k \) message bits encoded to \(n \) code bits i.e., each of \(2^k \) messages encoded into a unique \(n \)-bit codeword via a linear transformation.

Key property: Sum of any two codewords is also a codeword \(\rightarrow \) necessary and sufficient for code to be linear.

\((n,k)\) code has rate \(k/n \).
Sometime written as \((n,k,d)\), where \(d \) is the minimum Hamming Distance of the code.
Generator Matrix of Linear Block Code

Linear transformation:

\[C = D \cdot G \]

C is an \(n \)-element row vector containing the codeword

D is a \(k \)-element row vector containing the message

G is the \(k \times n \) generator matrix

Each codeword bit is a specified linear combination of message bits.

Each codeword is a linear combination of rows of G.
(n,k) Systematic Linear Block Codes

- Split data into \(k \)-bit blocks
- Add \((n-k) \) parity bits to each block using \((n-k) \) linear equations, making each block \(n \) bits long

Every linear code can be represented by an equivalent systematic form --- ordering is not significant, direct inclusion of \(k \) message bits in \(n \)-bit codeword is.

Corresponds to using invertible transformations on rows and permutations on columns of \(G \) to get

\[
G = [I \mid A]
\]

--- identity matrix in the first \(k \) columns
Example: Rectangular Parity Codes

Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error.

<table>
<thead>
<tr>
<th>D1</th>
<th>D2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>D4</td>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
<td>P4</td>
<td></td>
</tr>
</tbody>
</table>

Parity for each row and column is correct ⇒ no errors

Parity check fails for row #2 and column #2 ⇒ bit D4 is incorrect

Parity check only fails for row #2 ⇒ bit P2 is incorrect

0 1 1
1 1 0
1 0

0 1 1
1 0 0
1 0

0 1 1
1 1 1
1 0
Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with r rows and c columns is 3. Hence, it is a single error correction (SEC) code.

Code rate = $rc / (rc + r + c)$.

If we add an overall parity bit P, we get a $(rc+r+c+1, rc, 4)$ code.

Improves error detection but not correction capability

Proof: Three cases.
1. Msgs with HD 1 → differ in 1 row and 1 col parity
2. Msgs with HD 2 → differ in either 2 rows OR 2 cols or both → HD ≥ 4
3. Msgs with HD 3 or more → HD ≥ 4
Matrix Notation

Task: given k-bit message, compute n-bit codeword. We can use standard matrix arithmetic (modulo 2) to do the job. For example, here’s how we would describe the (9,4,4) rectangular code that includes an overall parity bit.

\[D_{1 \times k} \cdot G_{k \times n} = C_{1 \times n} \]

\[
\begin{bmatrix}
D_1 & D_2 & D_3 & D_4
\end{bmatrix} \cdot \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
D_1 & D_2 & D_3 & D_4 & P_1 & P_2 & P_3 & P_4 & P_5
\end{bmatrix}
\]

The generator matrix, \(G_{k \times n} = \begin{bmatrix} I_{k \times k} & A_{k \times (n-k)} \end{bmatrix} \)
Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, \(w \).

Calculates all the parity bits from the data bits.

If no parity errors, return \(rc \) bits of data.

Single row or column parity bit error \(\rightarrow \) \(rc \) data bits are fine, return them.

If parity of row \(x \) and parity of column \(y \) are in error, then the data bit in the \((x, y)\) position is wrong; flip it and return the \(rc \) data bits.

All other parity errors are uncorrectable. Return the data as-is, flag an “uncorrectable error”
Let’s do some rectangular parity decoding

Received codewords

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D2</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>D4</td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>P4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Decoder action: ________________

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Decoder action: ________________

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

3. Decoder action: ________________
How Many Parity Bits Do Really We Need?

• We have $n-k$ parity bits, which collectively can represent 2^{n-k} possibilities.

• For single-bit error correction, parity bits need to represent two sets of cases:
 – Case 1: No error has occurred (1 possibility)
 – Case 2: Exactly one of the code word bits has an error (n possibilities, not k)

• So we need $n+1 \leq 2^{n-k}$
 \[n \leq 2^{n-k} - 1 \]

• Rectangular codes satisfy this with big margin --- inefficient
Hamming Codes

• Hamming codes correct single errors with the minimum number of parity bits:

\[n = 2^{n-k} - 1 \]

• (7, 4, 3)
• (15, 11, 3)
• (2^m - 1, 2^m - 1 - m, 3)

• --- “perfect codes” (but not best!)
Towards More Efficient Codes: (7,4,3) Hamming Code Example

- Use minimum number of parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

Suppose we check the parity and discover that P_1 and P_3 indicate an error? bit D_2 must have flipped.

What if only P_2 indicates an error?

P_2 itself had the error!

$P_1 = D_1 + D_2 + D_4$
$P_2 = D_1 + D_3 + D_4$
$P_3 = D_2 + D_3 + D_4$
Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
 - That way, all message bits will be covered with a unique combination of parity bits

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary index</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>(7,4) code</td>
<td>P₁</td>
<td>P₂</td>
<td>D₁</td>
<td>P₃</td>
<td>D₂</td>
<td>D₃</td>
<td>D₄</td>
</tr>
</tbody>
</table>

\[
P₁ = D₁ + D₂ + D₄
P₂ = D₁ + D₃ + D₄
P₃ = D₂ + D₃ + D₄
\]

P₁ with binary index 001 covers

\[
D₁ with binary index 011
D₂ with binary index 101
D₄ with binary index 111
\]
Syndrome Decoding: Idea

- After receiving the possibly corrupted message (use ' to indicate possibly erroneous symbol), compute a syndrome bit \((E_i)\) for each parity bit

\[
E_1 = D'_1 + D'_2 + D'_4 + P'_1 \\
E_2 = D'_1 + D'_3 + D'_4 + P'_2 \\
E_3 = D'_2 + D'_3 + D'_4 + P'_3
\]

- If all the \(E_i\) are zero: no errors
- Otherwise use the particular combination of the \(E_i\) to figure out correction

Table

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary index</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>(7,4) code</td>
<td>P1</td>
<td>P2</td>
<td>D1</td>
<td>P3</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(E_3E_2E_1)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>no errors</td>
</tr>
<tr>
<td>001</td>
<td>(p_1) has an error, flip to correct</td>
</tr>
<tr>
<td>010</td>
<td>(p_2) has an error, flip to correct</td>
</tr>
<tr>
<td>011</td>
<td>(d_1) has an error, flip to correct</td>
</tr>
<tr>
<td>100</td>
<td>(p_3) has an error, flip to correct</td>
</tr>
<tr>
<td>101</td>
<td>(d_2) has an error, flip to correct</td>
</tr>
<tr>
<td>110</td>
<td>(d_3) has an error, flip to correct</td>
</tr>
<tr>
<td>111</td>
<td>(d_4) has an error, flip to correct</td>
</tr>
</tbody>
</table>
Constraints for more than single-bit errors

Code parity constraint inequality for single-bit errors

$$1 + n \leq 2^{n-k}$$

Write-out the inequality for t-bit errors
Elementary Combinatorics

• Given n objects, in how many ways can we choose m of them?

If the ordering of the m selected objects matters, then
\[n(n-1)(n-2) \ldots (n-m+1) = \frac{n!}{(n-m)!} \]

If the ordering of the m selected objects doesn’t matter, then the above expression is too large by a factor m!, so

“n choose m” = \[\binom{n}{m} = \frac{n!}{(n-m)!m!} \]
Error-Correcting Codes occur in many other contexts too

• e.g., ISBN numbers for books,
 0-691-12418-3
(Luenberger’s *Information Science*)

• $1D_1 + 2D_2 + 3D_3 + \ldots + 10D_{10} = 0 \mod 11$

Detects single-digit errors, and transpositions
6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.