MAJOR HINT for Neural Nets portion of Lab 5

To understand what to implement for `dOutDx(self, weight)` for lab 5, you'll need to thoroughly understand how the error update equation for back-propagation is fully derived. Recall from lecture that the error update equation for back propagation is:

\[w' = w + \alpha \cdot \frac{\partial P}{\partial w}. \]

Here, \(\frac{\partial P}{\partial w} \) is a derivative defined for all weights \(w \) in the network. This guide will show that this derivative can be constructed from \(\frac{\partial o}{\partial w} \) and \(\frac{\partial i}{\partial w} \) i.e. the `dOutDx` for Neuron and Inputs elements in the network.

Let's take a look at the derivatives in terms of the three types of elements.

1. **Performance Node**: This is the top most derivative we consider. The chain rule expansion of \(\frac{\partial P}{\partial w} \) gives us:

\[\frac{\partial P}{\partial w} = \frac{\partial P}{\partial o_C} \cdot \frac{\partial o_C}{\partial w} \]

We already know the mathematical expression for the first term. But what about the second
term? Isn't that just \(\frac{\partial i}{\partial w_{AC}} \) called on neuron C?

2. **Input Node:** This one is easy! \(\frac{\partial i}{\partial w_{AC}} = 0 \). Since weights are not related to inputs.

3. **Neuron Nodes:**
 In reference to the two-layer net (Figure 1), consider the following two cases: \(\frac{\partial o_C}{\partial w_{AC}} \) and \(\frac{\partial o_C}{\partial w_{1A}} \)

 Case 1: \(\frac{\partial o_C}{\partial w_{AC}} \) involves a weight that is connected directly into Neuron C.

 Expanding by chain rule:
 \[
 \frac{\partial o_C}{\partial w_{AC}} = \frac{\partial o_C}{\partial z_C} \cdot \frac{\partial z_C}{\partial w_{AC}}
 \]
 \[
 = o_C(1-o_C) \cdot \frac{\partial [w_{AC} \cdot o_A + w_{BC} \cdot o_B - w_C]}{\partial w_{AC}}
 \]
 Expanding out \(z_C \)

 What is \(o_A \)? That's just calling **output**() on neuron A! You can access Neuron A by calling the API **get_inputs**() from neuron C!

 Case 2: \(\frac{\partial o_C}{\partial w_{1A}} \) involves a weight that is further downstream from Neuron C:

 By faithfully expanding the derivative via the chain rule, we get:
 \[
 \frac{\partial o_C}{\partial w_{1A}} = \frac{\partial o}{\partial z_C} \cdot \frac{\partial z_C}{\partial w_{1A}}
 \]
 \[
 = o_C(1-o_C) \cdot \left[\frac{\partial [w_{AC} \cdot o_A + w_{BC} \cdot o_B + w_C \cdot i_0]}{\partial w_{1A}} \right]
 \]
 \[
 = o_C(1-o_C) \cdot \left[w_{AC} \cdot \frac{\partial o_A}{\partial w_{1A}} + w_{BC} \cdot \frac{\partial o_B}{\partial w_{1A}} + w_C \cdot \frac{\partial i_0}{\partial w_{1A}} \right]
 \]
 derivative of the input unit is 0

 Q: So what are the programmatic equivalents of \(\frac{\partial o_A}{\partial w_{1A}} \) and \(\frac{\partial o_B}{\partial w_{1A}} \)?

 A: They are just the value of calling **dOutDx** \((w_{1A})\) on neuron A and neuron B respectively!

 Working these two derivatives out by hand illustrates the two key cases that your code needs to handle.

 So think of structuring your **dOutDx** code for Neurons in terms of these two cases:
 1. When \(w \) is a weight that is directly connected to the current neuron (check using
has_weight(weight))
2. When w is a weight that is not directly connected.

Each case will involve some code that combines output() and dOutDx() call on various relevant elements.

Note: You may also further break case-2 down into two subcases:
a) weights that are descendants of (or downstream from) the current node
b) weights that are not downstream from the current node (in which case their ultimate derivative value should be 0.)

If you chose to sub-case case 2, then you may consider using isa_descendant_weight(elem, weight) to help you. weight is a direct input weight into the current neuron, and elem is the weight that you are checking.