LECTURE 24

- Reference: Section 9.3
- Course Evaluations (until 12/16)
 [link](http://web.mit.edu/subjectevaluation)

Outline

- Review
 - Maximum likelihood estimation
 - Confidence intervals
- Linear regression
- Binary hypothesis testing
 - Types of error
 - Likelihood ratio test (LRT)

Review

- Maximum likelihood estimation
 - Have model with unknown parameters:
 \[X \sim p_X(x; \theta) \]
 - Pick \(\theta \) that “makes data most likely”
 \[\max_{\theta} p_X(x; \theta) \]
 - Compare to Bayesian MAP estimation:
 \[\max_{\theta} p_{\theta|X}(\theta | x) \text{ or } \max_{\theta} \frac{p_X(x|\theta)p_\theta(\theta)}{p_Y(y)} \]
- Sample mean estimate of \(\theta = E[X] \)
 \[\hat{\Theta}_n = (X_1 + \cdots + X_n)/n \]
- 1 - \(\alpha \) confidence interval
 \[P(\hat{\Theta}_n^- \leq \theta \leq \hat{\Theta}_n^+) \geq 1 - \alpha, \quad \forall \theta \]
 - confidence interval for sample mean
 - let \(z \) be s.t. \(\Phi(z) = 1 - \alpha/2 \)
 \[P(\hat{\Theta}_n - \frac{z\sigma}{\sqrt{n}} \leq \theta \leq \hat{\Theta}_n + \frac{z\sigma}{\sqrt{n}}) \approx 1 - \alpha \]

Regression

- Data: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)
- Model: \(y \approx \theta_0 + \theta_1 x \)
 \[\min_{\theta_0, \theta_1} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2 \]
 \((*)\)
- One interpretation:
 \[Y_i = \theta_0 + \theta_1 x_i + W_i, \quad W_i \sim N(0, \sigma^2), \text{ i.i.d.} \]
 - Likelihood function \(f_{X,Y|\theta}(x,y; \theta) \) is:
 \[c \cdot \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2 \right\} \]
 - Take logs, same as \((*)\)
 - Least sq. \(\leftrightarrow \) pretend \(W_i \) i.i.d. normal

Linear regression

- Model \(y \approx \theta_0 + \theta_1 x \)
 \[\min_{\theta_0, \theta_1} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2 \]
 \((*)\)
- Solution (set derivatives to zero):
 \[x = \frac{x_1 + \cdots + x_n}{n}, \quad y = \frac{y_1 + \cdots + y_n}{n} \]
 \[\bar{\theta}_1 = \frac{\sum_{i=1}^{n} (x_i - x)(y_i - y)}{\sum_{i=1}^{n} (x_i - x)^2} \]
 \[\bar{\theta}_0 = y - \bar{\theta}_1 x \]
- Interpretation of the form of the solution
 - Assume a model \(Y = \theta_0 + \theta_1 X + W \)
 \(W \) independent of \(X \), with zero mean
 - Check that
 \[\theta_1 = \frac{\text{cov}(X,Y)}{\text{var}(X)} = \frac{E[(X - E[X])(Y - E[Y])]}{E[(X - E[X])^2]} \]
 - Solution formula for \(\bar{\theta}_1 \) uses natural estimates of the variance and covariance
The world of linear regression

- **Multiple linear regression:**
 - **data:** $(x_i, x'_i, x''_i, y_i), i = 1, \ldots, n$
 - **model:** $y \approx \theta_0 + \theta x + \theta'x' + \theta''x''$
 - **formulation:**
 $$\min_{\theta, \theta', \theta''} \sum_{i=1}^{n} (y_i - \theta_0 - \theta x_i - \theta'x'_i - \theta''x''_i)^2$$

- **Choosing the right variables**
 - **model:** $y \approx \theta_0 + \theta_1 h(x)$
 e.g., $y \approx \theta_0 + \theta_1 x^2$
 - **work with data points** $(y_i, h(x))$
 - **formulation:**
 $$\min_{\theta_0, \theta_1} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 h(x_i))^2$$

The world of regression (ctd.)

- **In practice,** one also reports
 - Confidence intervals for the θ_i
 - “Standard error” (estimate of σ)
 - R^2, a measure of “explanatory power”

Some common concerns

- Heteroskedasticity
- Multicollinearity
- Sometimes misused to conclude causal relations
- etc.

Binary hypothesis testing

- Binary θ; new terminology:
 - **null hypothesis** H_0: $X \sim p_X(x; H_0)$ [or $f_X(x; H_0)$]
 - **alternative hypothesis** H_1: $X \sim p_X(x; H_1)$ [or $f_X(x; H_1)$]

- Partition the space of possible data vectors
 Rejection region R: reject H_0 iff data $\in R$

- Types of errors:
 - **Type I (false rejection, false alarm):** H_0 true, but rejected
 $$\alpha(R) = P(X \in R; H_0)$$
 - **Type II (false acceptance, missed detection):** H_0 false, but accepted
 $$\beta(R) = P(X \notin R; H_1)$$

Likelihood ratio test (LRT)

- Bayesian case (MAP rule): choose H_1 if:
 $$\frac{P(X = x | H_1)P(H_1)}{P(X = x | H_0)P(H_0)} > \frac{P(X = x | H_0)}{P(X = x)}$$
 or
 $$\frac{P(X = x | H_1)}{P(X = x | H_0)} > \frac{P(H_0)}{P(H_1)}$$
 (likelihood ratio test)

- Nonbayesian version: choose H_1 if
 $$\frac{f_X(x; H_1)}{f_X(x; H_0)} > \xi$$ (discrete case)
 $$\frac{f_X(x; H_1)}{f_X(x; H_0)} > \xi$$ (continuous case)

- threshold ξ trades off the two types of error
 - choose ξ so that $P(\text{reject } H_0; H_1) = \alpha$
 (e.g., $\alpha = 0.05$)
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.