Problem Set 3

Problem 1. [16 points] Warmup Exercises
For the following parts, a correct numerical answer will only earn credit if accompanied by it's derivation. Show your work.

(a) [4 pts] Use the Pulverizer to find integers s and t such that \(135s + 59t = \gcd(135, 59)\).
(b) [4 pts] Use the previous part to find the inverse of 59 modulo 135 in the range \(\{1, \ldots, 134\}\).
(c) [4 pts] Use Euler’s theorem to find the inverse of 17 modulo 31 in the range \(\{1, \ldots, 30\}\).
(d) [4 pts] Find the remainder of \(34^{2248}\) divided by 83. (Hint: Euler’s theorem.)

Problem 2. [16 points]
Prove the following statements, assuming all numbers are positive integers.

(a) [4 pts] If \(a \mid b\), then \(\forall c, a \mid bc\)
(b) [4 pts] If \(a \mid b\) and \(a \mid c\), then \(a \mid sb + tc\).
(c) [4 pts] \(\forall c, a \mid b \iff ca \mid cb\)
(d) [4 pts] \(\gcd(ka, kb) = k \gcd(a, b)\)

Problem 3. [20 points] In this problem, we will investigate numbers which are squares modulo a prime number \(p\).

(a) [5 pts] An integer \(n\) is a square modulo \(p\) if there exists another integer \(x\) such that \(n \equiv x^2 \pmod p\). Prove that \(x^2 \equiv y^2 \pmod p\) if and only if \(x \equiv y \pmod p\) or \(x \equiv -y \pmod p\). (Hint: \(x^2 - y^2 = (x + y)(x - y)\))

(b) [5 pts] There is a simple test we can perform to see if a number \(n\) is a square modulo \(p\). It states that

Theorem 1 (Euler’s Criterion). :
1. If \(n \) is a square modulo \(p \) then \(n^{\frac{p-1}{2}} \equiv 1 \) (mod \(p \)).

2. If \(n \) is not a square modulo \(p \) then \(n^{\frac{p-1}{2}} \equiv -1 \) (mod \(p \)).

Prove the first part of Euler’s Criterion. (Hint: Use Fermat’s theorem.)

(c) [10 pts] Assume that \(p \equiv 3 \) (mod 4) and \(n \equiv x^2 \) (mod \(p \)). Given \(n \) and \(p \), find one possible value of \(x \). (Hint: Write \(p \) as \(p = 4k + 3 \) and use Euler’s Criterion. You might have to multiply two sides of an equation by \(n \) at one point.)

Problem 4. [10 points] Prove that for any prime, \(p \), and integer, \(k \geq 1 \),

\[
\phi(p^k) = p^k - p^{k-1},
\]

where \(\phi \) is Euler’s function. (Hint: Which numbers between 0 and \(p^k - 1 \) are divisible by \(p \)? How many are there?)

Problem 5. [18 points] Here is a very, very fun game. We start with two distinct, positive integers written on a blackboard. Call them \(x \) and \(y \). You and I now take turns. (I’ll let you decide who goes first.) On each player’s turn, he or she must write a new positive integer on the board that is a common divisor of two numbers that are already there. If a player can not play, then he or she loses.

For example, suppose that 12 and 15 are on the board initially. Your first play can be 3 or 1. Then I play 3 or 1, whichever one you did not play. Then you can not play, so you lose.

(a) [6 pts] Show that every number on the board at the end of the game is either \(x \), \(y \), or a positive divisor of \(\gcd(x, y) \).

(b) [6 pts] Show that every positive divisor of \(\gcd(x, y) \) is on the board at the end of the game.

(c) [6 pts] Describe a strategy that lets you win this game every time.

Problem 6. [20 points] In one of the previous problems, you calculated square roots of numbers modulo primes equivalent to 3 modulo 4. In this problem you will prove that there are an infinite number of such primes!

(a) [6 pts] As a warm-up, prove that there are an infinite number of prime numbers. (Hint: Suppose that the set \(F \) of all prime numbers is finite, that is \(F = \{p_1, p_2, \ldots, p_k\} \) and define \(n = p_1p_2\ldots p_k + 1 \).)

(b) [2 pts] Prove that if \(p \) is an odd prime, then \(p \equiv 1 \) (mod 4) or \(p \equiv 3 \) (mod 4).

(c) [6 pts] Prove that if \(n \equiv 3 \) (mod 4), then \(n \) has a prime factor \(p \equiv 3 \) (mod 4).
(d) [8 pts] Let F be the set of all primes p such that $p \equiv 3 \pmod{4}$. Prove by contradiction that F has an infinite number of primes.

(Hint: Suppose that F is finite, that is $F = \{p_1, p_2, \ldots, p_k\}$ and define $n = 4p_1p_2\ldots p_k - 1$. Prove that there exists a prime $p_i \in F$ such that $p_i | n$.)