1. Recall the protocol by which Alice commits herself to a bit \(x \in \{0, 1\} \) without revealing \(x \) to Bob. Namely, Alice first chooses two large random prime numbers \(P \) and \(Q \), one of which ends in a ‘7’ if and only if \(x = 1 \). She then computes their product \(N = PQ \) and sends \(N \) to Bob, but keeps the factors \(P \) and \(Q \) to herself. To reveal the value of \(x \) later, Alice sends \(P \) and \(Q \) to Bob, whereupon Bob checks that (i) \(P \) and \(Q \) encode the claimed value of \(x \), (ii) \(P \) and \(Q \) are indeed prime numbers, and (iii) \(PQ = N \). Suppose Bob forgets to check that \(P \) and \(Q \) are prime. Does the protocol still work correctly, and if not, what can go wrong?

2. Recall Euclid’s algorithm for computing \(\text{GCD}(A, B) \) for positive integers \(A \geq B \), which is given by the following recursive pseudocode:

   ```
   if B divides A then return B
   else return GCD(B, A mod B)
   ```

 Show that, if initialized on \(n \)-bit integers \(A \geq B \), Euclid’s algorithm halts after at most \(2^n \) iterations. [Hint: Let \(A_t \geq B_t \) be the arguments to the GCD function at the \(t \)th iteration, so that \(A_1 = A \) and \(B_1 = B \). What can you say about the decrease of \(A_t \), as a function of \(t \)?]

3. Show that any language \(L \) containing only finitely many strings is regular.

4. Show that, if \(L_1 \) and \(L_2 \) are any two regular languages, then \(L_1 \cap L_2 \) is also a regular language.

5. Let \(L = \{x \in \{a, b\}^* : x \) does not contain two consecutive \(b \)'s\}. Write a regular expression for \(L \).

6. Let \(L \subseteq \{a, b\}^* \) be the language consisting of all palindromes: that is, strings like \(abba \) that are the same backwards and forwards. Using the pigeonhole principle, show that \(L \) is not regular.

7. Concatenation of regular languages

 (a) Let \(L \subseteq \{a, b, c\}^* \) be the language consisting of all strings \(w \) that can be expressed as \(w_1 \circ w_2 \), where \(w_1 \) contains an even number of \(b \)'s, \(w_2 \) contains a number of \(c \)'s that is divisible by 3, and \(\circ \) denotes string concatenation. Show that \(L \) is regular, by constructing an NDFA that recognizes \(L \).

 (b) Let \(L \subseteq \{a, b\}^* \) be the language consisting of all strings \(w \) that can be expressed as \(w_1 \circ w_2 \), where \(w_1 \) contains an even number of \(b \)'s and \(w_2 \) contains a number of \(b \)'s that is divisible by 3. Construct a DFA that recognizes \(L \). [Hint: You could do this by first constructing an NDFA and then using the simulation of NDFA’s by DFA’s, but that’s working way too hard!]

 (c) Generalize part a. to show that, if \(L_1 \) and \(L_2 \) are any two regular languages, then

 \[
 L = \{w_1 \circ w_2 | w_1 \in L_1, w_2 \in L_2 \}
 \]

 is also a regular language.