Divide & Conquer

- Paradigm
- Convex Hull
- Median finding

Paradigm

Given a problem of size n

Divide it into a subproblems of size $\frac{n}{b}$

where $a > 1$, $b > 1$

Solve each subproblem recursively

Combine solutions of subproblems to get overall solution

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \left[\text{work for merge}\right]$$
Convex Hull

Given n points in plane [Ref § 33.3]

$$S = \{ (x_i, y_i) \mid i = 1, 2, \ldots, n \}$$

Assume no two have same x coord, no two have same y coord, and no three in a line for convenience.

(Convex Hull: smallest polygon containing all points in S)

If points are nails, then $CH(S)$ is shape of rubber band around all the nails.

$CH(S)$ represented by the sequence of points on the boundary in order clockwise.

$$p \leftrightarrow q \leftrightarrow r \leftrightarrow s \leftrightarrow t$$
Brute force for Convex Hull

n points

Test each line segment to see if it makes up an edge of the convex hull:

- If the rest of the points are on one side of the segment, the segment is on the convex hull — above

- else the segment is not — above

$O(n^2)$ edges, $O(n)$ tests $\Rightarrow O(n^3)$ complexity

Can we do better?
D&C for Convex Hull

Sort points by x coord (once & for all, O(n log n))
For input set S of points:
- Divide into left-half A & right half B
 - by x coords
- Compute CH(A) & CH(B)
- Combine CH's of two halves (merge step)

HOW TO MERGE?

A

\[\begin{array}{c}
 a_4 \\
 a_5 \\
 a_1 \\
 a_2 \\
 a_3 \\
\end{array}\]

B

\[\begin{array}{c}
 b_2 \\
 b_1 \\
 b_3 \\
\end{array}\]

Find upper tangent \((ai, bj)\)
Find lower tangent \((ak, bm)\)

Cut & paste in time \(\Theta(n)\)
First Link \(ai \to bj\), go down b list till you see \(bm\) and link \(bm\) to \(ak\)
Continue along the a list until you return to \(ai\)
FINDING TANGENTS

Assume a_i maximizes x within $CH(A) (a_1, a_2, \ldots, a_p)$

b_j minimizes x within $CH(B) (b_1, b_2, \ldots, b_q)$

L is the vertical line separating A & B

Define $y(i,j)$ as y-coordinate of pt of intersection

between L & segment (a_i, b_j)

CLAIM: (a_i, b_j) is upper tangent iff it maximizes $y(i,j)$

If $y(i,j)$ is not maximum, there will be points on

both sides of (a_i, b_j) and it can't be a tangent.

Algorithm: Obvious $O(n^2)$ algorithm looks at all

a_i, b_j pairs $T(n) = 2T(n/2) + \Theta(n^2)

= \Theta(n^2)$

\[
\begin{align*}
\text{\#} & \quad i = 1 \\
\text{\#} & \quad j = 1 \\
\text{while} & \quad (y(i, j+1) > y(i, j) \quad \text{or} \quad y(i-1, j) > y(i, j)): \\
\text{if} & \quad y(i, j+1) > y(i, j): \quad \text{move right finger} \\
& \quad j = j+1 \quad \text{(mod q)} \\
\text{else} & \quad i = i-1 \quad \text{(mod p)} \quad \text{move left finger} \\
\text{return} & \quad (a_i, b_j) \quad \text{as upper tangent} \\
\text{Similarly for lower tangent} \\
T(n) = 2T(n/2) + \Theta(n) \quad \text{Master Theorem gives } \Theta(n \log n)
\end{align*}
\]
Intuition for why Merge works

a_1, b_1 are right most & leftmost points.

We move anti-clockwise from a_1, clockwise from b_1.

As, $\ldots \text{aq}$ is a convex hull, as is $b_1, b_2, \ldots b_q$.

If ai, b_j is such that moving from either ai or b_j decreases $y(i,j)$ there are no points above the (ai, b_j) line.

The formal proof is quite involved and won't be covered.
Median Finding

[Ref: § 9.3]

given set of n numbers, define rank(x) as
number of numbers in the set that are ≤ x

Find element of rank \(\left\lfloor \frac{n+1}{2} \right\rfloor \): lower median
(or element of rank i)

\(\left\lceil \frac{n+1}{2} \right\rceil \): upper median

Clearly sorting works in time \(\Theta(n \log n) \)

Can we do better?

Select \((S, i)\)

- Pick \(x \in S \) (cleverly)
- Compute \(k = \text{rank}(x) \)

\(B = \{ y \in S \mid y < x \} \)
\(C = \{ y \in S \mid y > x \} \)

\[\begin{array}{c}
 \leftarrow B \\
 x \\
 \rightarrow C
\end{array} \]

- if \(k = i \): return \(x \)
- else if \(k > i \): return Select(\(B_i \))
- else if \(k < i \): return Select(\(C, i-k \))
PICKING X CLEVERLY

Need to pick x so $\text{rank}(x)$ is not extreme.

- Arrange S into columns of size 5 ($\frac{n}{5}$ cols)
- Sort each column (big elements on top) (linear time)
- Find "median of medians" as x

How many elements are guaranteed to be $> x$?

Half of the $\frac{n}{5}$ groups contribute at least 3 elements $> x$ except for 1 group with less than 5 elements & 1 group that contains x

At least $3(\frac{n}{10}7 - 2)$ elements are $> x$

Recurrence: $T(n) = \begin{cases}
O(1) & \text{for } n \leq 140 \\
T\left(\frac{\lfloor n/5 \rfloor}{7}\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n) & \text{sorting each column}
\end{cases}$
Solving the Recurrence

Master theorem does not apply

Prove $T(n) \leq c \cdot n$ by induction, for some large enough c

- True for $n \leq 140$ by choosing large c
- $T(n) \leq c \cdot \lceil \frac{n}{5} \rceil + c \cdot \left(\frac{7n + 6}{10} \right) + a \cdot n$
 - (a needs to be large enough to cover $O(n)$ term)

\[
\leq \frac{cn}{5} + c + \frac{7nc}{10} + 6c + an
\]

\[
= cn + c + \left(\frac{-cn + 7c + an}{10} \right)
\]

If this is ≤ 0, we are done

$C \geq \frac{70c + 10a}{n}$

OK for $n \geq 140$ & $C \geq 20a$
Example

\[a_3, b_1 \text{ is upper tangent} \]
\[a_4 > a_3 \]
\[b_2 > b_1 \]
\[a_1, b_3 \text{ is lower tangent} \]
\[a_2 < a_1 \]
\[b_4 < b_3 \]

\[a_i, b_j \text{ is an upper tangent. Does not mean that } a_i \text{ or } b_j \text{ is the highest point} \]