Homework 8: Cache-Oblivious Algorithms

Then, answer the writeup questions in this handout and submit an individual writeup. See the following paper for more information on cache-oblivious algorithms:
https://dl.acm.org/citation.cfm?id=2/zero.noslash71383.

For this homework, assume that all matrices are stored in row-major layout.

1 Cache Complexity of Matrix Multiplication

During Lecture 14 we discussed the cache complexity of matrix multiplication of dimension \(n \), with tall cache assumption of size \(M \) and cache line size \(B \). For the naive approach, there were two cases: 1) If \(n > M/B \), then \(\Theta(n^3) \) cache misses occur, and 2) if \(M^{1/2} < n < M/B \), then \(\Theta(n^3/B) \) cache misses occur. For the blocking approach, with block size \(s < M^{1/2} \), \(\Theta(n^3/BM^{1/2}) \) cache misses occur. The cache-oblivious approach achieves the same complexity as the blocking approach without the need of the voodoo parameter \(s \).

Checkoff Item 1: Assume we want to multiply two rectangular matrices: \(m \times n \) with \(n \times r \). Given the same tall cache assumption, please analyze the complexity for one of the following four cases: the two cases for the naive approach \((n > M/B \) and \(M/r < n < M/B) \), the block approach, and the cache-oblivious approach. You may pick whichever case you want to analyze.

2 Tableau Construction

Consider the tableau-construction problem from Lecture 8. The problem involves filling an \(N \times N \) tableau, where each entry of the tableau is calculated as a function of some of its neighbors. To be specific, the equation to fill an element of the tableau would take the form

\[
A[i][j] = f(A[i-1][j-1], A[i][j-1], A[i-1][j])
\]

where \(f \) is an arbitrary function.
2.1 Iterative Formulation

Consider the code snippet in Figure 1 below.

```c
#define A(i, j) A[N + (i) - (j) - 1]

void tableau(double *A, size_t N) {
    for (size_t i = 1; i < N; i++) {
        for (size_t j = 1; j < N; j++) {
            A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
        }
    }
}
```

Figure 1: A simple, iterative loop for filling a tableau.

In this problem, we are only interested in computing the final value of the tableau, stored in \(A(N-1, N-1) \), and hence we really only need \(2N - 1 \) amount of space during computation. Thus, the algorithm declares \(A \) as an array of size \(2N - 1 \).

The algorithm initializes the first row and first column of the tableau, and invokes the `tableau` function as shown in Figure 2.

```c
for (size_t i = 0; i < N; i++) {
    A(i, 0) = INIT_VAL;
}
for (size_t j = 0; j < N; j++) {
    A(0, j) = INIT_VAL;
}
tableau(A, N);
res = A(N - 1, N - 1);
```

Figure 2: Initializing and calling the iterative `tableau` function.

Write-up 1: Explain why \(2N - 1 \) space is sufficient and how the `tableau` function utilizes the \(2N - 1 \) space.

Recall the tall cache assumption, which states that \(B^2 < \alpha M \), where \(B \) is the size of the cache line, \(M \) is the size of the cache, and \(\alpha \leq 1 \) is a constant.
Write-up 2: Assuming that an optimal replacement strategy holds and that the cache is tall, give a tight upper bound on the cache complexity $Q(n)$ for each of the following cases using O notation, where $c \leq 1$ is a sufficiently small constant:

1. $n \geq cM$
2. $n < cM$

2.2 Recursive Formulation

Now consider the code snippet for a recursive tableau implementation, as shown in Figure 3. This algorithm similarly uses only $2N - 1$ amount of space, initializes the array A, and invokes the `recursive_tableau` function as shown in Figure 4. This recursive algorithm divides the tableau into four quadrants to compute. As discussed in Lecture 8 (slide 88), after the first quadrant is done computing, we can then compute the second and third quadrants in parallel. Parallelizing this way gives us work as $O(n^2)$ and span as $O(n^{\log_3 4})$ with parallelism as $O(n^{2 - \log_3 4})$. We also discussed (slide 92) a more parallel construction that divides up the tableau 9 ways.
```c
for (size_t i = 0; i < N; i++) {
    A(i, 0) = INIT_VAL;
}
for (size_t j = 0; j < N; j++) {
    A(0, j) = INIT_VAL;
}
if (N > 1) {
    recursive_tableau(A, 1, N, 1, N);
}
res = A(N-1, N-1);
```

Figure 4: Initializing and calling the `recursive_tableau` function.

Write-up 3: Derive the general formula for work and span, assuming a k^2-way tableau construction (i.e., the tableau is divided up into k^2 pieces of size $n/k \times n/k$).

Write-up 4: Answer the following questions assuming that an optimal replacement strategy holds and that the cache is tall.

1. Show the recurrence relation for the cache complexity $Q(n)$ using the 4-way construction of the `recursive_tableau` function.

2. Draw the recursion tree and label the internal nodes and leaves with their cache complexity $Q(n)$. What’s the height of the recursion tree?

3. How many leaves are in the recursion tree?

4. Using the recursion tree and the recurrence relation, derive a simplified expression for $Q(n)$.

Write-up 5: Answer the following question assuming that an optimal replacement strategy holds and that the cache is tall. Assuming a k^2-way tableau construction, show that if we are “unlucky,” where a subpiece is just slightly above the cache size, then we have $Q(n) = \Theta(n^2k/MB)$. Also show that if we are lucky and this situation does not arise, then we have $Q(n) = \Theta(n^2/MB)$.
