Problem Set 3 Solutions

Problem 3.1

Consider a control system described by

\[\ddot{q}(t) - a^2 q(t) = v(t) + f_1(t), \quad g(t) = q(t) + f_2(t), \]

where \(f = [f_1; f_2] \) is a normalized white noise, \(v \) is the control signal, \(g \) is the sensor measurement, and \(a > 0 \) is a parameter. The objective is to find a dynamic feedback controller (with input \(g \) and output \(v \)) which stabilizes the system while using a minimum of control effort (defined as the asymptotic variance of \(v(t) \) as \(t \to \infty \)).

(a) Find the coefficients of the auxiliary abstract H2 optimization problems associated with the original task.

For

\[x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}, \quad w = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, \quad u = v, \quad y = g, \quad z = v, \]

we have

\[A = \begin{bmatrix} 0 & 1 \\ a^2 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \]
\[C_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D_{11} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \]

\({}^1\text{Version of March 9, 2004}\)
$D_{12} = 1, \ D_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix}, \ D_{22} = 0.$

The full information control abstract H2 optimization has coefficients

$$a = A, \ b = B_2, \ c = C_1, \ d = D_{12}.$$

The state estimation abstract H2 optimization problem has coefficients

$$a = A', \ b = C'_2, \ c = B'_1, \ d = D'_{21}.$$

(b) Write analytically the associated Hamiltonian matrices, bases of their stable invariant subspaces, stabilizing solutions of the Riccati equations, and optimal controller and observer gains.

The full information control Hamiltonian is

$$\mathcal{H}_{fi} = \begin{bmatrix} A & B_2B'_2 \\ 0 & -A' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ a^2 & 0 & 0 & 1 \\ 0 & 0 & 0 & -a^2 \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Its eigenvalues are $\pm a$ (double multiplicity each). Hence the stable invariant subspace of \mathcal{H}_{fi} is the kernel of $(\mathcal{H}_{fi} + aI)^2$. A basis in this kernel is given by

$$\begin{bmatrix} 1 \\ 0 \\ -2a^3 \\ -2a^2 \end{bmatrix}, \ \begin{bmatrix} -1/a \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Hence

$$P_{fi} = -\begin{bmatrix} -2a^3 & 0 \\ -2a^2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1/a \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2a^3 & 2a^2 \\ 2a^2 & 2a \end{bmatrix},$$

and the optimal state feedback gain is given by

$$K = -B'_2P_{fi} = \begin{bmatrix} -2a^2 & -2a \end{bmatrix}.$$

A good sanity check here: the closed loop poles (eigenvalues of $A + B_2K$) should be identical to the stable eigenvalues of the Hamiltonian.

The state estimation Hamiltonian is

$$\mathcal{H}_{se} = \begin{bmatrix} A' & C'_2C_2 \\ B_1B'_1 & -A \end{bmatrix} = \begin{bmatrix} 0 & a^2 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -a^2 & 0 \end{bmatrix}.$$
Its characteristic polynomial is \(s^4 - 2a^2s^2 + a^4 + 1 \), and hence its eigenvalues \(s \) satisfy \(s^2 = a^2 \pm j \). The stable eigenvalue \(s = x + jy \) such that \(s^2 = a^2 + j \) is given by

\[
x = -\sqrt{\frac{\sqrt{a^4 + 1} + a^2}{2}}, \quad y = -\sqrt{\frac{\sqrt{a^4 + 1} - a^2}{2}}.
\]

The corresponding eigenvector is

\[
h = \begin{bmatrix} x + jy \\ 1 \\ j \\ y - jx \end{bmatrix}.
\]

Since \(\mathcal{H}_{se} \) has real coefficients, the eigenvector corresponding to eigenvalue \(x - jy \) will be the complex conjugate of \(h \). Hence real and imaginary parts of \(h \) form a basis in the stable invariant subspace of \(\mathcal{H}_{se} \):

\[
\begin{bmatrix} y \\ 0 \\ 1 \\ -x \end{bmatrix}, \quad \begin{bmatrix} x \\ 1 \\ 0 \\ y \end{bmatrix}.
\]

Hence

\[
P_{se} = -\begin{bmatrix} 1 & 0 \\ -x & y \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1/y & x/y \\ x/y & -x^2/y - y \end{bmatrix},
\]

and

\[
L = P_{se}C_2' = \begin{bmatrix} 1/y \\ -x/y \end{bmatrix}.
\]

(c) Derive an analytical expression for the transfer function of the optimal dynamic feedback controller, and verify it using numerical calculations with h2syn.m.

The closed loop transfer function is given by

\[
G(s) = -K(sI - A - B_2K - LC_2)^{-1}L.
\]

To verify the formulae, MATLAB function ps3_1.m can be used. This function relies on SIMULINK design diagram ps3_1a.m.
Problem 3.2

Random signal $q = q(t)$ is assumed to be a “bandlimited white noise” of a given bandwidth B (i.e. the result of passing the true white noise $v_1(t)$ through an ideal low-pass filter of bandwidth B rad/sec). A high quality sensor is assumed to measure $q(t)$ accurately, except for a white additive noise, with the signal-to-noise ratio of 10.

(a) Use h2syn.m to design a 10-th order linear filter which inputs the sensor output, and outputs an estimate of $\dot{q}(t)$ which makes the mean square estimation error as small as possible.

M-function ps3.2a.m does the job. It uses a 10-th order Butterworth filter W with cut-off frequency B to model q as $q = Ww$, where w is the normalized white noise.

(b) Test your design by comparing the simulated performance of filters you have designed for $B = 10$ rad/sec and $B = 1$ rad/sec on signals $q(\cdot)$ of bandwidths of $B = 10$ and $B = 1$ rad/sec. (One expects that the filter optimized for $B = 10$ rad/sec will be better on the $q(\cdot)$ with bandwidth $B = 10$ rad/sec than the filter optimized for $B = 1$ rad/sec, and vice versa.) Use the generator of bandlimited white noise supplied with the SIMULINK to perform the simulations.

The SIMULINK diagram for testing is ps3.2c.mdl. You must run ps3.2b.m before you open it. For $B = 1$ rad/sec, the degradation of performance when a filter designed for $B = 10$ is used is dramatic (at least a 10-fold increase of error). For $B = 10$, the degradation of performance when a filter designed for $B = 1$ is used is not as big, but still quite noticeable.