Problem 1
(a) Let \(C \) be a nonempty convex cone. Show that \(cl(C) \) and \(ri(C) \) is also a convex cone.
(b) Let \(C = cone\{x_1, \ldots, x_m\} \). Show that
\[
ri(C) = \{ \sum_{i=1}^{m} a_i x_i | a_i > 0, i = 1, \ldots, m \}.
\]

Problem 2
Let \(C_1 \) and \(C_2 \) be convex sets. Show that
\[
C_1 \cap ri(C_2) \neq \emptyset \quad \text{if and only if} \quad ri(C_1 \cap aff(C_2)) \cap ri(C_2) \neq \emptyset.
\]

Problem 3
(a) Consider a vector \(x^* \) such that a given function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex over a sphere centered at \(x^* \). Show that \(x^* \) is a local minimum of \(f \) if and only if it is a local minimum of \(f \) along every line passing through \(x^* \) [i.e., for all \(d \in \mathbb{R}^n \), the function \(g : \mathbb{R} \rightarrow \mathbb{R} \), defined by \(g(\alpha) = f(x^* + \alpha d) \), has \(\alpha^* = 0 \) as its local minimum].
(b) Consider the nonconvex function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) given by
\[
f(x_1, x_2) = (x_2 - px_1^2)(x_2 - qx_1^2),
\]
where \(p \) and \(q \) are scalars with \(0 < p < q \), and \(x^* = (0, 0) \). Show that \(f(y, my^2) < 0 \) for \(y \neq 0 \) and \(m \) satisfying \(p < m < q \), so \(x^* \) is not a local minimum of \(f \) even though it is a local minimum along every line passing through \(x^* \).

Problem 4
(a) Consider the quadratic program
\[
\begin{align*}
& \text{minimize} & & \frac{1}{2} |x|^2 + c'x \\
& \text{subject to} & & Ax = 0
\end{align*}
\]
where \(c \in \mathbb{R}^n \) and \(A \) is an \(m \times n \) matrix of rank \(m \). Use the Projection Theorem to show that
\[
x^* = - (I - A'(AA')^{-1}A)c
\]
is the unique solution.
(b) Consider the more general quadratic program

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \left(x - \bar{x} \right)' Q (x - \bar{x}) + c'(x - \bar{x}) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

where \(c \) and \(A \) are as before, \(Q \) is a symmetric positive definite matrix, \(b \in \mathbb{R}^m \), and \(\bar{x} \) is a vector in \(\mathbb{R}^n \), which is feasible, i.e., satisfies \(A\bar{x} = b \). Use the transformation \(y = Q^{1/2}(x - \bar{x}) \) to write this problem in the form of part (a) and show that the optimal solution is

\[
x^* = \bar{x} - Q^{-1}(c - A'\lambda),
\]

where \(\lambda \) is given by

\[
\lambda = (AQ^{-1}A')^{-1}AQ^{-1}c.
\]

(c) Apply the result of part (b) to the program

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} x'Qx + c'x \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

and show that the optimal solution is

\[
x^* = -Q^{-1}(c - A'\lambda - A'(AQ^{-1}A')^{-1}b).
\]

Problem 5

Let \(X \) be a closed convex subset of \(\mathbb{R}^n \), and let \(f : \mathbb{R}^n \mapsto (-\infty, \infty] \) be a closed convex function such that \(X \cap \text{dom}(f) \neq \emptyset \). Assume that \(f \) and \(X \) have no common nonzero direction of recession. Let \(X^* \) be the set of minima of \(f \) over \(X \) (which is nonempty and compact), and let \(f^* = \inf_{x \in X} f(x) \). Show that:

(a) For every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that every vector \(x \in X \) with \(f(x) \leq f^* + \delta \) satisfies \(\min_{x^* \in X^*} \| x - x^* \| \leq \epsilon \).

(b) If \(f \) is real-valued, for every \(\delta > 0 \) there exists an \(\epsilon > 0 \) such that every vector \(x \in X \) with \(\min_{x^* \in X^*} \| x - x^* \| \leq \epsilon \) satisfies \(f(x) \leq f^* + \delta \).

(c) Every sequence \(\{ x_k \} \subset X \) satisfying \(f(x_k) \to f^* \) is bounded and all its limit points belong to \(X^* \).