LECTURE 15

LECTURE OUTLINE

• Subgradient methods
• Calculation of subgradients
• Convergence

• Steepest descent at a point requires knowledge of the entire subdifferential at a point
• Convergence failure of steepest descent

• Subgradient methods abandon the idea of computing the full subdifferential to effect cost function descent ...
• Move instead along the direction of a single arbitrary subgradient

All figures are courtesy of Athena Scientific, and are used with permission.
SINGLE SUBGRADIENT CALCULATION

- **Key special case:** Minimax

\[f(x) = \sup_{z \in Z} \phi(x, z) \]

where \(Z \subset \mathbb{R}^m \) and \(\phi(\cdot, z) \) is convex for all \(z \in Z \).

- For fixed \(x \in \text{dom}(f) \), assume that \(z_x \in Z \) attains the supremum above. Then

\[g_x \in \partial \phi(x, z_x) \quad \Rightarrow \quad g_x \in \partial f(x) \]

- **Proof:** From subgradient inequality, for all \(y \),

\[
\begin{align*}
 f(y) &= \sup_{z \in Z} \phi(y, z) \\
 &= \phi(y, z_x) \\
 &\geq \phi(x, z_x) + g_x'(y - x) \\
 &= f(x) + g_x'(y - x)
\end{align*}
\]

- **Special case:** Dual problem of \(\min_{x \in X, g(x) \leq 0} f(x) \):

\[
\max_{\mu \geq 0} q(\mu) \equiv \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \{ f(x) + \mu'g(x) \}
\]

or \(\min_{\mu \geq 0} F(\mu) \), where \(F(-\mu) \equiv -q(\mu) \).
ALGORITHMS: SUBGRADIENT METHOD

• **Problem:** Minimize convex function \(f : \mathbb{R}^n \mapsto \mathbb{R} \) over a closed convex set \(X \).

• **Subgradient method:**

\[
x_{k+1} = P_X(x_k - \alpha_k g_k),
\]

where \(g_k \) is any subgradient of \(f \) at \(x_k \), \(\alpha_k \) is a positive stepsize, and \(P_X(\cdot) \) is projection on \(X \).
KEY PROPERTY OF SUBGRADIENT METHOD

- For a small enough stepsize α_k, it reduces the Euclidean distance to the optimum.

- **Proposition:** Let $\{x_k\}$ be generated by the subgradient method. Then, for all $y \in X$ and k:

\[
\|x_{k+1} - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k \left(f(x_k) - f(y) \right) + \alpha_k^2 \|g_k\|^2
\]

and if $f(y) < f(x_k)$,

\[
\|x_{k+1} - y\| < \|x_k - y\|,
\]

for all α_k such that

\[
0 < \alpha_k < \frac{2(f(x_k) - f(y))}{\|g_k\|^2}.
\]
PROOF

• Proof of nonexpansive property

\[\| P_X(x) - P_X(y) \| \leq \| x - y \|, \quad \forall x, y \in \mathbb{R}^n. \]

Use the projection theorem to write

\[(z - P_X(x))' (x - P_X(x)) \leq 0, \quad \forall z \in X \]

from which \((P_X(y) - P_X(x))' (x - P_X(x)) \leq 0 \).

Similarly, \((P_X(x) - P_X(y))' (y - P_X(y)) \leq 0 \).

Adding and using the Schwarz inequality,

\[
\| P_X(y) - P_X(x) \|^2 \leq (P_X(y) - P_X(x))' (y - x) \\
\leq \| P_X(y) - P_X(x) \| \cdot \| y - x \|
\]

Q.E.D.

• Proof of proposition: Since projection is non-expansive, we obtain for all \(y \in X \) and \(k \),

\[
\| x_{k+1} - y \|^2 = \| P_X(x_k - \alpha_k g_k) - y \|^2 \\
\leq \| x_k - \alpha_k g_k - y \|^2 \\
= \| x_k - y \|^2 - 2\alpha_k g_k' (x_k - y) + \alpha_k^2 \| g_k \|^2 \\
\leq \| x_k - y \|^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 \| g_k \|^2,
\]

where the last inequality follows from the subgradient inequality. Q.E.D.
CONVERGENCE MECHANISM

• Assume constant stepsize: \(\alpha_k \equiv \alpha \)
• If \(\|g_k\| \leq c \) for some constant \(c \) and all \(k \),

\[
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*)\right) + \alpha^2 c^2
\]

so the distance to the optimum decreases if

\[
0 < \alpha < \frac{2(f(x_k) - f(x^*))}{c^2}
\]

or equivalently, if \(x_k \) does not belong to the level set

\[
\left\{ x \mid f(x) < f(x^*) + \frac{\alpha c^2}{2} \right\}
\]
STEPSIZE RULES

- **Constant Stepsize:** \(\alpha_k \equiv \alpha \).
- **Diminishing Stepsize:** \(\alpha_k \to 0, \sum_k \alpha_k = \infty \)
- **Dynamic Stepsize:**
 \[
 \alpha_k = \frac{f(x_k) - f_k}{c^2}
 \]
 where \(f_k \) is an estimate of \(f^* \):
 - If \(f_k = f^* \), makes progress at every iteration. If \(f_k < f^* \) it tends to oscillate around the optimum. If \(f_k > f^* \) it tends towards the level set \(\{ x | f(x) \leq f_k \} \).
 - \(f_k \) can be adjusted based on the progress of the method.
- **Example of dynamic stepsize rule:**
 \[
 f_k = \min_{0 \leq j \leq k} f(x_j) - \delta_k,
 \]
 and \(\delta_k \) (the “aspiration level of cost reduction”) is updated according to
 \[
 \delta_{k+1} = \begin{cases}
 \rho \delta_k & \text{if } f(x_{k+1}) \leq f_k, \\
 \max\{\beta \delta_k, \delta\} & \text{if } f(x_{k+1}) > f_k,
 \end{cases}
 \]
 where \(\delta > 0, \beta < 1, \) and \(\rho \geq 1 \) are fixed constants.
SAMPLE CONVERGENCE RESULTS

• Let \(\bar{f} = \inf_{k \geq 0} f(x_k) \), and assume that for some \(c \), we have

\[
c \geq \sup_{k \geq 0} \{ \|g\| \mid g \in \partial f(x_k) \}.
\]

• Proposition: Assume that \(\alpha_k \) is fixed at some positive scalar \(\alpha \). Then:

 (a) If \(f^* = -\infty \), then \(\bar{f} = f^* \).

 (b) If \(f^* > -\infty \), then

\[
\bar{f} \leq f^* + \frac{\alpha c^2}{2}.
\]

• Proposition: If \(\alpha_k \) satisfies

\[
\lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=0}^{\infty} \alpha_k = \infty,
\]

then \(\bar{f} = f^* \).

• Similar propositions for dynamic stepsize rules.

• Many variants ...