Part I: Designing HMM-based ASR systems

Rita Singh

School of Computer Science
Carnegie Mellon University
Table of contents

◆ Isolated word recognition
 ● Bayesian Classification
 ● Decoding based on best state sequences

◆ Word sequence recognition
 ● Bayesian Classification
 ● Decoding based on best state sequences
 ● Best path decoding and collapsing graphs

◆ Search strategies
 ● Depth first
 ● Breadth first

◆ Optimal graph structures
 ● Constrained language decoding
 ● Natural language decoding
 ● HMMs for the language
 ‣ Unigram
 ‣ Bigram
 ‣ trigram
Statistical Pattern Classification

- Given data \(X \), find which of a number of classes \(C_1, C_2, \ldots C_N \) it belongs to, based on known distributions of data from \(C_1, C_2, \) etc.

- Bayesian Classification:
 \[
 \text{Class} = C_i : i = \arg\max_j P(C_j)P(X|C_j)
 \]

 - \textit{a priori} probability of \(C_j \)
 - Probability of \(X \) as given by the probability distribution of \(C_j \)

- The \textit{a priori} probability accounts for the relative proportions of the classes
 - If you never saw any data, you would guess the class based on these probabilities alone

- \(P(X|C_j) \) accounts for evidence obtained from observed data \(X \)
Statistical Classification of Isolated Words

- Classes are words
- Data are instances of isolated spoken words
 - Sequence of feature vectors derived from speech signal, typically 1 vector from a 25ms frame of speech, with frames shifted by 10ms.

Bayesian classification:

\[
\text{Recognized_Word} = \arg\max_{\text{word}} P(\text{word})P(X|\text{word})
\]

- \(P(\text{word}) \) is a priori probability of \(\text{word} \)
 - Obtained from our expectation of the relative frequency of occurrence of the word
- \(P(X|\text{word}) \) is the probability of \(X \) computed on the probability distribution function of \(\text{word} \)
Computing $P(X|\text{word})$

- To compute $P(X|\text{word})$, there must be a statistical distribution for X corresponding to word
 - Each word must be represented by some statistical model.
- We represent each word by an HMM
 - An HMM is really a graphical form of probability density function for time-varying data

Each state has a probability distribution function
Transitions between states are governed by transition probabilities
At each time instant the model is in some state, and it emits one observation vector from the distribution associated with that state
Computing $P(X|\text{word})$

- The actual state sequence that generated X is never known.
 - $P(X|\text{word})$ must therefore consider all possible state sequences.

$$P(X \mid \text{word}) = \sum_{s \in \{\text{all state sequences}\}} P(X, s \mid \text{word})$$

The probabilities of all possible state sequences must be added to obtain the total probability.
Computing \(P(X \mid \text{word}) \)

- The actual state sequence that generated \(X \) is never known.
 - \(P(X \mid \text{word}) \) must therefore consider all possible state sequences.

\[
P(X \mid \text{word}) = \sum_{s \in \{\text{all state sequences}\}} P(X, s \mid \text{word})
\]

- The actual number of state sequences can be very large
 - Cannot explicitly sum over all state sequences

- \(P(X \mid \text{word}) \) can however be efficiently calculated using the forward recursion

\[
\alpha(s, t \mid \text{word}) = \sum_{s'} \alpha(s', t - 1 \mid \text{word}) P(s \mid s') P(X_t \mid s)
\]

Total probability of all state sequences ending in state \(s \) at time \(t \)
Computing $P(X|\text{word})$

- The forward recursion

\[\alpha(s_3, 4 | \text{word}) \]

\[\alpha(s_2, 4 | \text{word}) \]

\[\alpha(s_3, 5 | \text{word}) \]

Total probability of all state sequences ending at s_3 at time=5
Computing $P(X|\text{word})$

- The total probability of X, including the contributions of all state sequences, is the forward probability at the final non-emitting node

$$P(X|\text{word}) = \alpha(s_{\text{terminal}}, T|\text{word})$$
Decoding isolated words
Classifying between two words: *Odd* and *Even*

HMM for *Odd*

\[P(Odd)P(X|Odd) \]

HMM for *Even*

\[P(Even)P(X|Even) \]
Classifying between *Odd* and *Even*
Decoding to classify between *Odd* and *Even*

- Approximate total probability of all paths with probability of best path
 - Computations can be done in the log domain. Only additions and comparisons are required
 - Cheaper than full-forward where multiplications and additions are required
Computing Best Path Scores for Viterbi Decoding

- The approximate score for a word is

\[P(X \mid \text{word}) \approx \max_{s \in \{\text{all state sequences}\}} \{P(X, s \mid \text{word})\} \]

- Written explicitly

\[
P(X_1..X_t \mid \text{word}) \approx \max_{s_1, s_2, \ldots, s_T} \{\pi(s_1)P(X_1 \mid s_1)P(s_2 \mid s_1)P(X_2 \mid s_2)\ldots P(s_T \mid s_{T-1})P(X_T \mid s_T)\}
\]

- The word score can be be recursively computed using the Viterbi algorithm

\[
P_s(t) = \max_{s'} \{P_{s'}(t-1)P(s \mid s')P(X_t \mid s)\}
\]

Best path score of all state sequences ending in state \(s \) at time \(t \)
Best path score of all state sequences ending in state \(s' \) at time \(t-1 \)
Computing Best Path Scores for Viterbi Decoding

- The forward recursion

\[P_{s_3}(5) = \max \{ P_{s_3}(4)P(s_3 \mid s_3)P(X_5 \mid s_3), P_{s_2}(4)P(s_3 \mid s_2)P(X_5 \mid s_3) \} \]
Computing Best Path Scores for Viterbi Decoding

- The forward recursion is termed Viterbi decoding
 - The terminology is derived from decoding of error correction codes

- The score for the word is the score of the path that wins through to the terminal state
 - We use the term *score* to distinguish it from the total probability of the word

\[
Score(X \mid \text{word}) = P_{s_{\text{terminal}}} (T)
\]
Decoding to classify between *Odd* and *Even*

- Compare scores (best state sequence probabilities) of all competing words

\[
\text{Score}(X|\text{Odd}) \quad \text{Score}(X|\text{Even})
\]

\[
P(\text{Odd}) \quad P(\text{Even})
\]
Decoding word sequences
Statistical Classification of Word Sequences

- Classes are word sequences
- Data are spoken recordings of word sequences
- Bayesian classification:

\[
\text{word}_1, \text{word}_2, \ldots, \text{word}_N = \arg \max_{\text{wd}_1, \text{wd}_2, \ldots, \text{wd}_N} \{ P(X \mid \text{wd}_1, \text{wd}_2, \ldots, \text{wd}_N) P(\text{wd}_1, \text{wd}_2, \ldots, \text{wd}_N) \}
\]

- \(P(\text{wd}_1, \text{wd}_2, \text{wd}_3..) \) is a priori probability of word sequence \(\text{wd}_1, \text{wd}_2, \text{wd}_3.. \)
 - Obtained from a model of the language

- \(P(X \mid \text{wd}_1, \text{wd}_2, \text{wd}_3..) \) is the probability of \(X \) computed on the probability distribution function of the word sequence \(\text{wd}_1, \text{wd}_2, \text{wd}_3.. \)
 - HMMs now represent probability distributions of word sequences
Constructing HMMs for word sequences

- Concatenate HMMs for each of the words in the sequence

![HMM diagrams for word 1 and word 2](image)

- In fact, word HMMs themselves are frequently constructed by concatenating HMMs for phonemes
 - Phonemes are far fewer in number than words, and occur more frequently in training data
 - Words that were never seen in the training data can be constructed from phoneme HMMs
Bayesian Classification between word sequences

- Classifying an utterance as either “Rock Star” or “Dog Star”
 - Must compare $P(\text{Rock}, \text{Star})P(X|\text{Rock Star})$ with $P(\text{Dog}, \text{Star})P(X|\text{Dog Star})$
Bayesian Classification between word sequences

\[P(\text{Rock, Star}) P(X|\text{Rock Star}) \]

\[P(\text{Dog, Star}) P(X|\text{Dog Star}) \]
Decoding word sequences

Score($X|\text{Dog Star}$)

Score($X|\text{Rock Star}$)

Approximate total probability with best path score
Decoding word sequences

The best path through *Dog Star* lies within the dotted portions of the trellis.

There are four transition points from *Dog* to *Star* in this trellis.

There are four different sets paths through the dotted trellis, each with its own best path.
Decoding word sequences

SET 1 and its best path

The best path through *Dog Star* lies within the dotted portions of the trellis.

There are four transition points from Dog to Star in this trellis.

There are four different sets paths through the dotted trellis, each with its own best path.
Decoding word sequences

The best path through *Dog Star* lies within the dotted portions of the trellis.

There are four transition points from Dog to Star in this trellis.

There are four different sets paths through the dotted trellis, each with its own best path.
Decoding word sequences

SET 3 and its best path

The best path through *Dog Star* lies within the dotted portions of the trellis.

There are four transition points from Dog to Star in this trellis.

There are four different sets of paths through the dotted trellis, each with its own best path.
Decoding word sequences

SET 4 and its best path

The best path through *Dog Star* lies within the dotted portions of the trellis.

There are four transition points from Dog to Star in this trellis.

There are four different sets paths through the dotted trellis, each with its own best path.
Decoding word sequences

The best path through \textit{Dog Star} is the best of the four transition-specific best paths

\[
\text{max}(\text{dogstar}) = \text{max} (\text{dogstar}_1, \text{dogstar}_2, \text{dogstar}_3, \text{dogstar}_4)
\]
Decoding word sequences

Similarly, for *Rock Star* the best path through the trellis is the best of the four transition-specific best paths

\[
\text{max(rockstar)} = \text{max (rockstar1, rockstar2, rockstar3, rockstar4)}
\]
Decoding word sequences

Then we'd compare the best paths through *Dog Star* and *Rock Star*

\[
\text{max}(\text{dogstar}) = \text{max} (\text{dogstar}_1, \text{dogstar}_2, \text{dogstar}_3, \text{dogstar}_4)
\]

\[
\text{max}(\text{rockstar}) = \text{max} (\text{rockstar}_1, \text{rockstar}_2, \text{rockstar}_3, \text{rockstar}_4)
\]

\[
\text{Viterbi} = \text{max} (\text{max}(\text{dogstar}), \text{max}(\text{rockstar}))
\]
Decoding word sequences

\[
\text{argmax is commutative:}
\]

\[
\max(\max(\text{dogstar}), \max(\text{rockstar}))
=
\max (\\
\max(\text{dogstar1}, \text{rockstar1}), \\
\max(\text{dogstar2}, \text{rockstar2}), \\
\max(\text{dogstar3}, \text{rockstar3}), \\
\max(\text{dogstar4}, \text{rockstar4}) \\
)
\]
Decoding word sequences

For a given entry point the best path through STAR is the same for both trellises.

We can choose between Dog and Rock right here because the futures of these paths are identical.
Decoding word sequences

We select the higher scoring of the two incoming edges here.

This portion of the trellis is now deleted.
Decoding word sequences

Similar logic can be applied at other entry points to *Star*

This copy of the trellis for *STAR* is completely removed.
Decoding word sequences

- The two instances of *Star* can be collapsed into one to form a smaller trellis
 - This is possible because we are decoding based on best path score, instead of full forward score

We can only do Viterbi decoding on this collapsed graph.
Full forward decoding is no longer possible.
Extending paths through the trellis: Breadth First vs. Depth First Search
Breadth First Search

time

states
Breadth First Search
Depth First Search
Depth First Search
No inconsistencies arise if path scores change monotonically with increasing path length.
- This can be guaranteed by normalizing all state output density values for a vector at a time t with respect to the highest valued density at t.
Designing optimal graph structures for the language HMM
Language HMMs for fixed-length word sequences

We will represent the vertical axis of the trellis in this simplified manner.
Language HMMs for fixed-length word sequences

- The word graph represents all allowed word sequences in our example
 - The set of all allowed word sequences represents the allowed “language”

- At a more detailed level, the figure represents an HMM composed of the HMMs for all words in the word graph
 - This is the “Language HMM” – the HMM for the entire allowed language

- The language HMM represents the vertical axis of the trellis
 - It is the trellis, and NOT the language HMM, that is searched for the best path
Language HMMs for fixed-length word sequences

- Recognizing one of four lines from “charge of the light brigade”

 Cannon to right of them
 Cannon to left of them
 Cannon in front of them
 Cannon behind them

6.345 Automatic Speech Recognition Designing HMM-based speech recognition systems 46
Simplification of the language HMM through lower context language models

- Recognizing one of four lines from “charge of the light brigade”
- If the probability of a word only depends on the preceding word, the graph can be collapsed:
 - e.g. \(P(\text{them} \mid \text{cannon to right of}) = P(\text{them} \mid \text{cannon to left of}) = P(\text{cannon} \mid \text{of}) \)
Refactored recognition problem for language HMMs which incorporate with lower context language models

- Our new statement of the problem with a smaller language model requirement:
 \[
 \text{word}_1, \text{word}_2, \ldots = \arg\max_{\text{wd}_1, \text{wd}_2, \ldots} \{ \arg\max_{s_1, s_2, \ldots, s_T} P(\text{wd}_1, \text{wd}_2, \ldots) P(X_1, X_2, \ldots X_T, s_1, s_2, \ldots, s_T | \text{wd}_1, \text{wd}_2, \ldots) \}
 \]

- The probability term can be factored into individual words as
 \[
 P(\text{wd}_1) P(X_{\text{wd}_1}, S_{\text{wd}_1} | \text{wd}_1) P(\text{wd}_2 | \text{wd}_1) P(X_{\text{wd}_2}, S_{\text{wd}_2} | \text{wd}_2). \\
 P(\text{wd}_3 | \text{wd}_1, \text{wd}_2) P(X_{\text{wd}_3}, S_{\text{wd}_3} | \text{wd}_3) \ldots P(\text{wd}_N | \text{wd}_1, \ldots \text{wd}_{N-1}) P(X_{\text{wd}_N}, S_{\text{wd}_N} | \text{wd}_N)
 \]

- Assume contexts beyond a given length \(K \) do not matter
 \[
 P(\text{wd}_N | \text{wd}_{N-1}, \text{wd}_{N-2}, \ldots, \text{wd}_{N-K}, \ldots, \text{wd}_1) = P(\text{wd}_N | \text{wd}_{N-1}, \text{wd}_{N-2}, \ldots, \text{wd}_{N-K})
 \]

- Nodes with the same word history \(\text{wd}_{N-1}, \text{wd}_{N-2}, \ldots, \text{wd}_{N-K} \) can be collapsed
Language HMMs for fixed-length word sequences: based on a grammar for Dr. Seuss

Each word is an HMM

- freezy → breeze → made → trees → these → three → trees → freeze → trees' → cheese
Language HMMs for fixed-length word sequences: command and control grammar

Each word is an HMM

open
edit
delete
close
file
all
marked
files
Language HMMs for arbitrarily long word sequences

- Previous examples chose between a finite set of known word sequences
- Word sequences can be of arbitrary length
 - E.g. set of all word sequences that consist of an arbitrary number of repetitions of the word bang

 bang
 bang bang
 bang bang bang
 bang bang bang bang

 - Forming explicit word-sequence graphs of the type we’ve seen so far is not possible
 - The number of possible sequences (with non-zero a-priori probability) is potentially infinite
 - Even if the longest sequence length is restricted, the graph will still be large
Language HMMs for arbitrarily long word sequences

- Arbitrary word sequences can be modeled with loops under some assumptions. E.g.:
 - A “bang” can be followed by another “bang” with probability $P(\text{“bang”})$.
 - $P(\text{“bang”}) = X$; $P(\text{Termination}) = 1-X$;
 - Bangs can occur only in pairs with probability X
 - A more complex graph allows more complicated patterns
 - You can extend this logic to other vocabularies where the speaker says more things than “bang”
 - e.g. “bang bang you’re dead”
Language HMMs for arbitrarily long word sequences

- Constrained set of word sequences with constrained vocabulary are realistic
 - Typically in command-and-control situations
 - Example: operating TV remote
 - Simple dialog systems
 - When the set of permitted responses to a query is restricted

- Unconstrained length word sequences: NATURAL LANGUAGE
 - State-of-art large vocabulary decoders
Language HMMs for Natural language: with unigram representations

- A bag of words model:
 - Any word is possible after any word.
 - The probability of a word is independent of the words preceding or succeeding it.
 - Also called a UNIGRAM model.

\[P(\text{Star}) = P(\text{Star} \mid \text{Dog}) = P(\text{Star} \mid \text{Rock}) = P(\text{Star} \mid \text{When you wish upon a}) \]

\[P(\text{When you wish upon a star}) = \]
\[P(\text{When}) \ P(\text{you}) \ P(\text{wish}) \ P(\text{upon}) \ P(\text{a}) \ P(\text{star}) \ P(\text{END}) \]

- “END” is a special symbol that indicates the end of the word sequence

- \(P(\text{END}) \) is necessary – without it the word sequence would never terminate
 - The total probability of all possible word sequences must sum to 1.0
 - Only if \(P(\text{END}) \) is explicitly defined will the total probability = 1.0
Language HMMs for Natural language: example of a graph which uses unigram representations

- Vocabulary: “fox”, “sox”, “knox”, “box”
- Arbitrary length sequences of arbitrary arrangements of these four words.
- Actual probabilities:
 - $P(\text{fox}), P(\text{sox}), P(\text{knox}), P(\text{box}), P(\text{END})$
 - $P(\text{fox}) + P(\text{sox}) + P(\text{knox}) + P(\text{box}) + P(\text{END}) = 1.0$

- The black dots are “non-emitting” states that are not associated with observations
Language HMMs for Natural language: bigram representations

- A unigram model is only useful when no statistical dependency between adjacent words can be assumed
 - Or, alternately, when the data used to learn these dependencies are too small to learn them reliably
 - Learning word dependencies: Later in the program

- In natural language, the probability of a word occurring depends on past words.
- Bigram language model: the probability of a word depends on the previous word
 - \(P(\text{Star} \mid \text{A Rock}) = P(\text{Star} \mid \text{The Rock}) = P(\text{Star} \mid \text{Rock}) \)
 - \(P(\text{Star} \mid \text{Rock}) \) is not required to be equal to \(P(\text{Star} \mid \text{Dog}) \)
 - In fact the two terms are assumed to be unrelated.
Language HMMs for Natural language: bigram representations

- Simple bigram example:
 - Vocabulary: START, “odd”, “even”, END
 - P(odd | START) = a, P(even | START) = b, P(END | START) = c
 - a+b+c = 1.0
 - P(odd | even) = d, P(even | even) = e, P(END | even) = f
 - d+e+f = 1.0
 - P(odd | odd) = g, P(even | odd) = h, P(END | odd) = i
 - g+h+i = 1.0

- START is a special symbol, indicating the beginning of the utterance
 - P(word | START) is the probability that the utterance begins with word
 - Prob(“odd even even odd”) = P(odd | START) P(even | odd) P(even | even) P (odd | even) P(END | odd)

- Can be shown that the total probability of all word sequences of all lengths is 1.0
 - Again, the definition of START and END symbols, and all bigrams involving the two, is crucial
Language HMMs for Natural language: building graphs to incorporate bigram representations

- Edges from “START” contain START dependent word probabilities
- Edges from “Even” contain “Even” dependent word probabilities
- Edges from “Odd” contain “Odd” dependent word probabilities

\[
P(Odd \mid Odd) = g \]

\[
P(END \mid Odd) = i \]

\[
P(Even \mid Odd) = h \]

\[
P(Odd \mid Odd) = g \]

\[
P(END \mid Odd) = i \]

\[
P(Even \mid Odd) = h \]

Each word is an HMM

6.345 Automatic Speech Recognition
Language HMMs for Natural language: building graphs to incorporate bigram representations

![Diagram of bigram loop and initialization](image)

6.345 Automatic Speech Recognition Designing HMM-based speech recognition systems 59
Language HMMs for Natural language: trigram representations

- Assumption: The probability of a word depends on the two preceding words

\[
P(\text{waltzing} | \text{you’ll come a}) = P(\text{waltzing} | \text{who’ll come a}) = P(\text{waltzing} | \text{come a})
\]

\[
P(\text{you’ll come a waltzing matilda with me}) = P(\text{you’ll} | \text{START}) \times P(\text{come} | \text{START you’ll}) \times P(\text{a} | \text{you’ll come}) \times P(\text{waltzing} | \text{come a}) \times P(\text{matilda} | \text{a waltzing}) \times P(\text{with} | \text{waltzing matilda}) \times P(\text{me} | \text{matilda with}) \times P(\text{END} | \text{with me})
\]

- For any word sequence \(w_1, w_2, w_3, w_4, w_5, \ldots, w_N\)

\[
P(w_1, w_2, \ldots, w_N) = P(w_1 | \text{START}) \times P(w_2 | \text{START } w_1) \times P(w_3 | w_1 w_2) \ldots \times P(\text{END} | w_{N-1} w_N)
\]

- Note that the FIRST term \(P(w_1 | \text{START})\) is a \textit{bigram} term. All the rest are trigrams.
Language HMMs for Natural language: building graphs to incorporate trigram representations

- Explanation with example: three word vocabulary “the”, “rock”, “star”
 - The graph initially begins with bigrams of START, since nothing precedes START
 - Trigrams of “START the”.

This is wrong! This would apply the probability $P(\text{the} | \text{START the})$ to instances of “the the the” (for which the correct probability value is $P(\text{the} | \text{the the})$)

Each word is an HMM

- $P(\text{the} | \text{START the})$
- $P(\text{rock} | \text{START})$
- $P(\text{star} | \text{START})$
- $P(\text{END} | \text{START})$
Language HMMs for Natural language: building graphs to incorporate trigram representations

- Explanation with example: three words vocab “the”, “rock”, “star”
 - The graph initially begins with bigrams of START, since nothing precedes START
 - Trigrams for all “START word” sequences
 - A new instance of every word is required to ensure that the two preceding symbols are “START word”

\[
P(\text{the} | \text{START the}) \\
P(\text{rock} | \text{START the}) \\
P(\text{the} | \text{START star}) \\
P(\text{rock} | \text{START star})
\]
Language HMMs for Natural language: building graphs to incorporate trigram representations

- Explanation with example: three words vocab “the”, “rock”, “star”
 - The graph initially begins with bigrams of START, since nothing precedes START
 - Each word in the second level represents a specific set of two terminal words in a partial word sequence

```
  START
     |  the
     |  rock
     |  star

  the
  |  the
  |  rock
  |  star

  rock
  |  the
  |  rock
  |  star

  star
  |  the
  |  rock
  |  star
```

- Each word is an HMM

This always represents a partial sequence ending with “rock star”
Language HMMs for Natural language: building graphs to incorporate trigram representations

- Explanation with example: three words vocab “the”, “rock”, “star”
 - The graph initially begins with bigrams of START, since nothing precedes START
 - Each word in the second level represents a specific set of two terminal words in a partial word sequence

![Diagram](https://example.com/diagram.png)

- Any edge coming out of this instance of STAR will have the word pair context “ROCK STAR”
Language HMMs for Natural language: building graphs to incorporate trigram representations

- Explanation with example: three words vocab “the”, “rock”, “star”
 - The graph initially begins with bigrams of START, since nothing precedes START
 - Each word in the second level represents a specific set of two terminal words in a partial word sequence

This STAR has input from “the” and “rock”. WRONG

Edges coming out of this wrongly connected STAR could have word pair contexts that are either “THE STAR” or “ROCK STAR”. This is ambiguous. A word cannot have incoming edges from two or more different words
Language HMMs for Natural language: building graphs to incorporate trigram representations

Each word is an HMM

Wij is an HMM for word Wi that can only be accessed from HMMs for word Wj. E.g. W12 is the HMM for word W1 that can only be used when the previous word was W2.
The logic can be extended

A trigram decoding structure for a vocabulary of D words needs D word instances at the first level and D^2 word instances at the second level
- Total of $D(D+1)$ word models must be instantiated
- Other, more expensive structures are also possible

An N-gram decoding structure will need
- $D + D^2 + D^3 \ldots D^{N-1}$ word instances
- Arcs must be incorporated such that the exit from a word instance in the $(N-1)^{th}$ level always represents a word sequence with the same trailing sequence of N-1 words
Next Class

- How the use of sub-word units complicates the structure of language HMMs in decoders