Measure and complements

We listed the rational numbers in $[-T/2, T/2]$ as a_1, a_2, \ldots

$$\mu\left\{ \bigcup_{i=1}^{k} a_i \right\} = \sum_{i=1}^{k} \mu([a_i, a_i]) = 0$$

The complement of $\bigcup_{i=1}^{k} a_i$ is $\bigcap_{i=1}^{k} \overline{a_i}$ where $\overline{a_i}$ is all $t \in [-T/2, T/2]$ except a_i.

Thus $\bigcap_{i=1}^{k} \overline{a_i}$ is a union of $k+1$ intervals, filling $[-T/2, T/2]$ except a_1, \ldots, a_k.

In the limit, this is the union of an uncountable set of irrational numbers; the measure is T.
MEASURABLE FUNCTIONS

A function \(\{u(t) : \mathbb{R} \rightarrow \mathbb{R}\} \) is measurable if \(\{t : u(t) < b\} \) is measurable for each \(b \in \mathbb{R} \).

The Lebesgue integral exists if the function is measurable and if the limit in the figure exists.

Horizontal crosshatching is what is added when \(\varepsilon \rightarrow \varepsilon/2 \). For \(u(t) \geq 0 \), the integral must exist (with perhaps an infinite value).
For $u(t) \geq 0$, the Lebesgue approximation might be infinite for all ε. Example: $u(t) = |1/t|$.

If approximation finite for any ε, then changing ε to $\varepsilon/2$ adds at most $\varepsilon/2$ to approximation.

Continued halving of interval adds at most $\varepsilon/2 + \varepsilon/4 + \cdots + \varepsilon$.

If any approximation is finite, integral is finite.
For a positive and negative function \(u(t) \) define a positive and negative part:

\[
\begin{align*}
 u^+(t) &= \begin{cases}
 u(t) & \text{for } t : u(t) \geq 0 \\
 0 & \text{for } t : u(t) < 0
 \end{cases} \\
 u^-(t) &= \begin{cases}
 0 & \text{for } t : u(t) \geq 0 \\
 -u(t) & \text{for } t : u(t) < 0
 \end{cases}
\end{align*}
\]

\[u(t) = u^+(t) - u^-(t). \]

If \(u(t) \) is measurable, then \(u^+(t) \) and \(u^-(t) \) are also and can be integrated as before.

\[
\int u(t) = \int u^+(t) - \int u^-(t) \, dt.
\]

except if both \(\int u^+(t) \, dt \) and \(\int u^-(t) \, dt \) are infinite, then the integral is undefined.
For \(\{ u(t) : [-T/2, T/2] \rightarrow \mathbb{R} \} \), the functions \(|u(t)|\) and \(|u(t)|^2\) are non-negative.

They are measurable if \(u(t) \) is.

\[|u(t)| = u^+(t) + u^-(t) \quad \text{thus} \quad \int |u(t)| \, dt = \int u^+(t) \, dt + \int u^-(t) \, dt \]

Def: \(u(t) \) is \(\mathcal{L}_1 \) if measurable and \(\int |u(t)| \, dt < \infty \).

Def: \(u(t) \) is \(\mathcal{L}_2 \) if measurable and \(\int |u(t)|^2 \, dt < \infty \).
A complex function \(\{u(t) : [-T/2, T/2] \to \mathbb{C}\} \) is measurable if both \(\Re[u(t)] \) and \(\Im[u(t)] \) are measurable.

Def: \(u(t) \) is \(\mathcal{L}_1 \) if \(\int |u(t)| \, dt < \infty \).

Since \(|u(t)| \leq |\Re(u(t))| + |\Im(u(t))| \), it follows that \(u(t) \) is \(\mathcal{L}_1 \) if and only if \(\Re[u(t)] \) and \(\Im[u(t)] \) are \(\mathcal{L}_1 \).

Def: \(u(t) \) is \(\mathcal{L}_2 \) if \(\int |u(t)|^2 \, dt < \infty \). This happens if and only if \(\Re[u(t)] \) and \(\Im[u(t)] \) are \(\mathcal{L}_2 \).
If \(|u(t)| \geq 1\) for given \(t\), then \(|u(t)| \leq |u(t)|^2\).

Otherwise \(|u(t)| \leq 1\). For all \(t\),
\[
|u(t)| \leq |u(t)|^2 + 1.
\]

For \(\{u(t) : [-T/2, T/2 \to \mathbb{C}]\}\),
\[
\int_{-T/2}^{T/2} |u(t)| \, dt \leq \int_{-T/2}^{T/2} [|u(t)|^2 + 1] \, dt
\]
\[
= T + \int_{-T/2}^{T/2} |u(t)|^2 \, dt
\]

Thus \(L_2\) finite duration functions are also \(L_1\).
\(L_2 \text{ functions } [-T/2, T/2] \to \mathbb{C} \)

\(L_1 \text{ functions } [-T/2, T/2] \to \mathbb{C} \)

Measurable functions \([-T/2, T/2] \to \mathbb{C}\)
Back to Fourier series:

Note that $|u(t)| = |u(t)e^{2\pi ift}|$

Thus, if $\{u(t) : [−T/2, T/2] \rightarrow \mathbb{C}\}$ is L_1, then

$$\int |u(t)e^{2\pi ift}| dt < \infty.$$

$$|\int u(t)e^{2\pi ift} dt| \leq \int |u(t)| dt < \infty.$$

If $u(t)$ is L_2 and time-limited, it is L_1 and same conclusion follows.
Theorem: Let \(\{u(t) : [-T/2, T/2] \to \mathbb{C}\} \) be an \(\mathcal{L}_2 \) function. Then for each \(k \in \mathbb{Z} \), the Lebesgue integral

\[
\hat{u}_k = \frac{1}{T} \int_{-T/2}^{T/2} u(t) e^{-2\pi ikt/T} \, dt
\]

exists and satisfies \(|\hat{u}_k| \leq \frac{1}{T} \int |u(t)| \, dt < \infty \). Furthermore,

\[
\lim_{k_0 \to \infty} \int_{-T/2}^{T/2} \left| u(t) - \sum_{k=-k_0}^{k_0} \hat{u}_k e^{2\pi ikt/T} \right|^2 \, dt = 0,
\]

where the limit is monotonic in \(k_0 \).
The most important part of the theorem is that

\[u(t) \approx \sum_{k=-k_0}^{k_0} \hat{u}_k e^{2\pi i k t/T} \]

where the energy difference between the terms goes to 0 as \(k_0 \to \infty \), i.e.,

\[
\lim_{k_0 \to \infty} \int_{-T/2}^{T/2} \left| u(t) - \sum_{k=-k_0}^{k_0} \hat{u}_k e^{2\pi i k t/T} \right|^2 \, dt = 0,
\]

We abbreviate this convergence by

\[u(t) = \text{l.i.m.} \sum_{k} \hat{u}_k e^{2\pi i k t/T} \text{rect}(\frac{t}{T}). \]
\[u(t) = \text{l.i.m.} \sum_k \hat{u}_k e^{2\pi i k t / T} \text{rect}(\frac{t}{T}). \]

This does not mean that the sum on the right converges to \(u(t) \) at each \(t \) and does not mean that the sum converges to anything.

There is an important theorem by Carleson that says that for \(L_2 \) functions, the sum converges a.e. That is, it converges to \(u(t) \) except on a set of \(t \) of measure 0.

This means that it converges for all integration purposes.
It is often important to go from sequence to function. The relevant result about Fourier series then is

Theorem: If a sequence of complex numbers \(\{\hat{u}_k; k \in \mathbb{Z}\} \) satisfies \(\sum_k |\hat{u}_k|^2 \), then an \(L_2 \) function \(\{u(t) : [-T/2, T/2] \to \mathbb{C}\} \) exists satisfying

\[
 u(t) = \text{l.i.m.} \sum_k \hat{u}_k e^{2\pi ikt/T} \text{rect}(\frac{t}{T}).
\]
Aside from all the mathematical hoopla (which is important), there is a very simple reason why so many things are simple with Fourier series. The expansion functions,

\[\theta_k(t) = e^{2\pi i k t / T} \text{rect}(t/T) \]

are orthogonal. That is

\[\int \theta_k(t)\theta_j^*(t) \, dt = T\delta_{k,j} \]

This is the feature that let us solve for \(\hat{u}_k(t) \) from the Fourier series \(u(t) = \sum_k \hat{u}_k \theta_k(t) \).
Functions not limited in time

We can segment an arbitrary L_2 function into segments of width T. The mth segment is $u_m(t) = u(t)\text{rect}(t/T - m)$. We then have

$$u(t) = \lim_{m_0 \to \infty} \sum_{m=-m_0}^{m_0} u_m(t)$$

This works because $u(t)$ is L_2. The energy in $u_m(t)$ must go to 0 as $m \to \infty$.

By shifting $u_m(t)$, we get the Fourier series:

$$u_m(t) = \lim_{m_0 \to \infty} \sum_k \hat{u}_{k,m} e^{2\pi i k t/T} \text{rect}(t/T - m), \quad \text{where}$$

$$\hat{u}_{k,m} = \frac{1}{T} \int_{-\infty}^{\infty} u(t) e^{-2\pi i k t/T} \text{rect}(t/T - m) \, dt, \quad -\infty < k < \infty.$$
This breaks $u(t)$ into a double sum expansion of orthogonal functions, first over segments, then over frequencies.

$$u(t) = \text{l.i.m.} \sum_{m,k} \hat{u}_{k,m} e^{2\pi i k t/T} \text{rect}(\frac{t}{T} - m)$$

This is the first of a number of orthogonal expansions of arbitrary L_2 functions.

We call this the T-spaced truncated sinusoid expansion.
\[u(t) = \text{l.i.m.} \sum_{m,k} \hat{u}_{k,m} e^{2\pi i k t/T} \text{rect} \left(\frac{t}{T} - m \right) \]

This is the conceptual basis for algorithms such as voice compression that segment the waveform and then process each segment.

It matches our intuition about frequency well; that is, in music, notes (frequencies) keep changing.

The awkward thing is that the segmentation parameter \(T \) is arbitrary and not fundamental.
Fourier transform: \(u(t) : \mathbb{R} \rightarrow \mathbb{C} \) to \(\hat{u}(f) : \mathbb{R} \rightarrow \mathbb{C} \)

\[
\hat{u}(f) = \int_{-\infty}^{\infty} u(t) e^{-2\pi i ft} \, dt.
\]

\[
u(t) = \int_{-\infty}^{\infty} \hat{u}(f) e^{2\pi i ft} \, df.
\]

For “well-behaved functions,” first integral exists for all \(f \), second exists for all \(t \) and results in original \(u(t) \).

What does well-behaved mean? It means that the above is true.
\[au(t) + bv(t) \leftrightarrow a\hat{u}(f) + b\hat{v}(f). \]
\[u^*(-t) \leftrightarrow \hat{u}^*(f). \]
\[\hat{u}(t) \leftrightarrow u(-f). \]
\[u(t - \tau) \leftrightarrow e^{-2\pi if\tau}\hat{u}(f) \]
\[u(t)e^{2\pi if_0t} \leftrightarrow \hat{u}(f - f_0) \]
\[u(t/T) \leftrightarrow T\hat{u}(fT). \]
\[\frac{du(t)}{dt} \leftrightarrow i2\pi f\hat{u}(f). \]
\[\int_{-\infty}^{\infty} u(\tau)v(t-\tau)\,d\tau \leftrightarrow \hat{u}(f)\hat{v}(f). \]
\[\int_{-\infty}^{\infty} u(\tau)v^*(\tau-t)\,d\tau \leftrightarrow \hat{u}(f)\hat{v}^*(f). \]
Two useful special cases of any Fourier transform pair are:

\[
 u(0) = \int_{-\infty}^{\infty} \hat{u}(f) \, df;
\]

\[
 \hat{u}(0) = \int_{-\infty}^{\infty} u(t) \, dt.
\]

Parseval’s theorem:

\[
 \int_{-\infty}^{\infty} u(t) v^*(t) \, dt = \int_{-\infty}^{\infty} \hat{u}(f) \hat{v}^*(f) \, df.
\]

Replacing \(v(t) \) by \(u(t) \) yields the energy equation,

\[
 \int_{-\infty}^{\infty} |u(t)|^2 \, dt = \int_{-\infty}^{\infty} |\hat{u}(f)|^2 \, df.
\]
6.450 Principles of Digital Communication I
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.