Review of Temporal Logic and Buchi Automata

Computer Science and Artificial Intelligence Laboratory
MIT
Armando Solar-Lezama

Nov 25, 2015
Relationship to Kripke structure

A Kripke structure represents a set of paths
- We want to establish the validity of a formula \(f \) under a Kripke structure \(M \) and a start state \(s \)

problem:
- formula is defined for a path, Kripke structure has many paths
CTL* Logic

Add two extra path quantifiers
- $A f :=$ for all paths, f
- $E f :=$ for some path, f

Two important subsets:
- LTL: all formulas of the form $A f$
 - Ex: $A(FG p)$
- CTL: there must be a path quantifier before every linear operator
 - Ex: $AG (EF p)$
- The two are different!
Example:

What does the following formula mean
- $A(F \land G \land p)$

How about
- $A(F \land A \land G \land p)$

How about
- $A(F \land E \land G \land p)$
Review of Temporal Logic

What about the following formula:
- $AG\ EF\ p$
Review of Temporal Logic

What does the following formula mean

1) $A(F \land G \ p)$

How about

2) $A(F \land A \land G \ p)$

How about

3) $A(F \land E \land G \ p)$
“Sometimes” and “Not Never” Revisited: On Branching versus Linear Time Temporal Logic
- Allen Emerson and Joseph Y. Halpern JACM Vol 33, 1986
Introduces CTL* as a way to unify branching time and linear time logics
Review of Temporal Logic

From any state, it is possible to return to the reset state along some execution.

- AGEF reset

A request should stay asserted until an acknowledge is received. The acknowledge must eventually be received.

- G req → req U ack

And, Ack must be received three cycles after request

- G req → (req U ack ^ XXX ack)
Review of Temporal Logic

Engine starts and stops with button push:

- If engine is off, it stays off until I push
 - If I never push it stays off forever
- If engine is on, it stays on until I push
 - If I never push it stays on forever
- If the engine is on, I should be able to stop it at any moment
- If it is off, I should be able to turn it back on, but not without identifying myself

\[
\begin{align*}
G \text{ off} & \Rightarrow \text{ off } U \text{ push} \\
G (\text{ off } \Rightarrow (\text{ off } U \text{ push} \lor G \text{ off})) \\
G (\text{ on } \Rightarrow (\text{ on } U \text{ push} \lor G \text{ on})) \\
A G (\text{ on } \Rightarrow EF \text{ off}) \\
A (\text{ off } \Rightarrow (EF \text{ on}) \land A((\text{ off } U \text{ id}) \lor G \text{ off})) \\
A((\text{ off } U \text{ id}) \lor G \text{ off}) \equiv \neg E(\neg \text{id} U(\neg \text{ off} \land \neg \text{id}))
\end{align*}
\]
Can the trains collide? \(\neg F (ph = 2 \land pv = 2) \)

```
while(*){
    pc=0
    if(p=0){
        p:=1;
    }
    pc=1
    if(p=1){
        if(g=free){
            g:=id;
            p:=2;
        }
    }
    pc=2
    if(p=2){
        p:=3;
        g:=free
    }
    pc=3
    if(p=3){
        p:=0;
    }
    pc=4
    if(p=4){
        pc=5
        g:=id;
        p:=2;
    }
    pc=5
    if(p=5){
        pc=6
    }
    pc=6
    if(p=6){
        pc=7
        p:=3;
        g:=free
    }
    pc=7
    if(p=7){
        pc=8
    }
    pc=8
    if(p=8){
        pc=9
        p:=0;
    }
    pc=9
}
```

- \(ph = \{0,1,2,3\} \)
- \(pv = \{0,1,2,3\} \)
- \(g = \{h, v, free\} \)
- \(pch = \{0, 1, ..., 9\} \)
- \(pcv = \{0, 1, ..., 9\} \)
Can the trains collide? \(\neg F (ph = 2 \land pv = 2) \)
Liveness Vs. Safety

Two terms you are likely to run into:

Safety:
- Something bad will never happen: $G \neg \text{bad}$
- If it fails to hold, it’s easy to produce a witness

Liveness:
- Something good will eventually happen: $F \text{good}$
- What does a witness for this look like?
Automata for LTL properties

LTL defines properties over a trace

Given a trace, we want to know whether it satisfies the property

Problem:
- we need to build an automata to recognize infinite strings!
- ω – Regular Languages
Buchi Automata

Similar to a DFA
- but with a stronger notion of acceptance

In DFA, you have an accept state
- when you reach accept state, you are done
- this means you only accept finite strings

In Buchi automata you also have accepting states
- but you only accept strings that visit the accept state infinitely often
A Buchi Automaton is a 5-tuple $\langle \Sigma, S, I, \delta, F \rangle$

- Σ is an alphabet
- S is a finite set of states
- $I \subseteq S$ is a set of initial states
- $\delta \subseteq S \times \Sigma \times S$ is a transition relation
- $F \subseteq S$ is a set of accepting states

Non-deterministic Buchi Automata are not equivalent to deterministic ones
Example

\[G \text{ req} \rightarrow F \text{ ack} \]
Example

G F p
From LTL to automata

Any LTL formula can be expressed as a Buchi automata
- but the construction of the automata is complicated
 • exponential on the size of the formula

- See Vardi and Wolper, *Reasoning about infinite computations*, 1983
Explicit State Model checking

The basic Strategy

Temporal Logic Formula

Buchi Automata

Product Automata

Model checker

OK

Kripke structure

Counterexample trace