Midterm out today.
Collaborations.

Shortest Paths
classical shortest paths.

- dijkstra’s algorithm
- floyd’s algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by “funny multiplication.”
 - huge integer implementation
 - base-(n + 1) integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2.
- gives $nMM(n)$ algorithm for problem
- what about recursive?
- well can get to within 2: let T_k be boolean “distance less than or equal to 2^k. Squaring gives T_{k+1}.
- $O(\log n)$ squares for unit length
- what about exact?

Seidel’s distance algorithm for unit lengths.

- log-size integers:
 - parities suffice:
 * square G to get adjacency A', distance D'
 - if D_{ij} even then $D_{ij} = 2D'_{ij}$
 - if D_{ij} odd then $D_{ij} = 2D'_{ij} - 1$
 - For neighbors i, k,
 * $D_{ij} - 1 \leq D_{kj} \leq D_{ij} + 1$
exists k, $D_{kj} = D_{ij} - 1$

- Parities
 - If D_{ij} even, then $D'_{kj} \geq D'_{ij}$ for every neighbor k
 - If D_{ij} odd, then $D'_{kj} \leq D'_{ij}$ for every neighbor k, and strict for at least one
- Add
 - D_{ij} even iff $S_{ij} = \sum_k D'_{kj} \geq D_{ij}d(i)$
 - D_{ij} odd iff $\sum_k D'_{kj} < D_{ij}d(i)$
 - How determine? find $S = AD'$

* Result: all distances in $O(M(n) \log n)$ time.

This is **deterministic distance algorithm**.

To find paths: Witness product

* example: tripartite one-hop hop case

Modify matrix alg:

* easy case: unique witness
 - multiply column c by c.
 - read off witness identity

* reduction to easy case:
 - Suppose r columns have witness
 - Suppose choose each with prob. p
 - Prob. exactly 1 witness: $rp(1 - p)^{r-1} \approx 1/e$
 - Try all values of r
 - Wait, too many.

* Approx
 - Suppose $p = 2/r$
 - Then prob. exactly 1 is $\approx 2/e^2$
 - So anything in range $1/r \ldots 1/2r$ will do.
 - So try p all powers of 2.
 - suppose $2^k \leq r \leq 2^{k+1}$
 - choose each column with probability 2^{-k}.
 - prob. exactly one witness: $r \cdot 2^{-k}(1 - 2^{-k})^{r-1} \geq (1/2)(1/e^2)$
 - so try $\log n$ distinct powers of 2, each $O(\log n)$ times

* So, can find shortest paths by doing one Matrix mul for each distance value
– n matrix muls
generalize to more distances:
– distances now known
– for each node, dest, find neighbor with distance one less
– boolean matrix R of “distance is $k - 1$”
– boolean witness product of RA

• Mod 3:
 – Recall some neighbor distance down by one
 – so compute distances mod 3.
 – suppose $D_{ij} = 1 \mod 3$
 – then look for k neighbor of i such that $D_{kj} = 0 \mod 3$
 – let $D_{ij}^{(s)} = 1$ iff $D_{ij} = s \mod 3$
 – than $AD^{(s)}$ has $ij = 1$ iff a neighbor k of i has $D_{kj}^{(s)}$
 – so, witness matrix mul!

Parallel Algorithms

PRAM

• P processors, each with a RAM, local registers
• global memory of M locations
• each processor can in one step do a RAM op or read/write to one global memory location
• synchronous parallel steps
• various conflict resolutions (CREW, EREW, CRCW)
• not realistic, but explores “degree of parallelism”

Randomization in parallel:

• load balancing
• symmetry breaking
• isolating solutions

Classes:

• NC: poly processor, polylog steps
• RNC: with randomization. polylog runtime, monte carlo
• ZNC: las vegas NC
• immune to choice of conflict resolution

Practical observations:
• very little can be done in $o(\log n)$ with poly processors
• lots can be done in $\Theta(\log n)$
• often concerned about work which is processors times time
• algorithm is “optimal” if work equals best sequential

Basic operations
• and, or
• counting ones
• parallel prefix

Addition
• Prefix sum over “kill”, “propogate”, “carry” operations
• handles n-bit numbers in $O(\log n)$ time
• multiplication as n^2 additions (better methods exist)

Sorting
Quicksort in parallel:
• n processors
• each takes one item, compares to splitter
• count number of predecessors less than splitter
• determines location of item in split
• total time $O(\log n)$
• combine: $O(\log n)$ per layer with n processors
• problem: $\Omega(\log^2 n)$ time bound
• problem: $n \log^2 n$ work
Perfect Matching

We focus on bipartite; book does general case.
Last time, saw detection algorithm in \mathcal{RNC}:

- Tutte matrix
- Symbolic determinant nonzero iff PM
- assign random values in $1, \ldots, 2m$
- Matrix Mul, Determinant in \mathcal{NC}

How about finding one?

- If unique, no problem
- Since only one nonzero term, ok to replace each entry by a 1.
- Remove each edge, see if still PM in parallel
- multiplies processors by m
- but still \mathcal{NC}

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma: [MVV]

- Family of distinct sets over x_1, \ldots, x_m
- assign random weights in $1, \ldots, 2m$
- $\text{Pr}(\text{unique min-weight set}) \geq 1/2$
- Odd: no dependence on number of sets!
- (of course $< 2^m$)

Proof:

- Fix item x_i
- Y is min-value sets containing x_i
- N is min-value sets not containing x_i
- true min-sets are either those in Y or in N
- how decide? Value of x_i
• For $x_i = -\infty$, min-sets are Y
• For $x_i = +\infty$, min-sets are N
• As increase from $-\infty$ to ∞, single transition value when both X and Y are min-weight
• If only Y min-weight, then x_i in every min-set
• If only X min-weight, then x_i in no min-set
• If both min-weight, x_i is ambiguous
• Suppose no x_i ambiguous. Then min-weight set unique!
• Exactly one value for x_i makes it ambiguous given remainder
• So $\Pr(\text{ambiguous}) = 1/2m$
• So $\Pr(\text{any ambiguous}) < m/2m = 1/2$

Usage:
• Consider tutte matrix A
• Assign random value 2^{w_i} to x_i, with $w_i \in 1, \ldots, 2m$
• Weight of matching is $2 \sum w_i$
• Let W be minimum sum
• Unique w/pr 1/2
• If so, determinant is odd multiple of 2^W
• Try removing edges one at a time
• Edge in PM iff new determinant/2^W is even.
• Big numbers? No problem: values have poly number of bits

NC algorithm open.
For exact matching, P algorithm open.