Polling

Outline

- Set has size \(u \), contains \(n \) “special” elements
- goal: count number of special elements
- sample with probability \(p = c(\log n)/\epsilon^2 n \)
- with high probability, \((1 \pm \epsilon)np\) special elements
- if observe \(k \) elements, deduce \(n \in (1 \pm \epsilon)k \).
- Problem: what is \(p \)?

Related idea: Monte Carlo simulation

- Probability space, event \(A \)
- easy to test for \(A \)
- goal: estimate \(p = \text{Pr}[A] \).
- Perform \(n \) trials (sampling with replacement).
 - expected outcome \(pn \).
 - estimator \(\frac{1}{n} \sum I_i \)
 - prob outside \(\epsilon < \exp(-\epsilon^2 np/3) \) (\(\epsilon < 1 \))
 - for prob. \(\delta \), need

\[
 n = O\left(\frac{\log 1/\delta}{\epsilon^2 p}\right)
\]

- what if \(p \) unknown?
- What if \(p \) is small?

Handling unknown \(p \)

- Sample \(n \) times till get \(\mu_{\epsilon,\delta} = O(\log 1/\epsilon^2) \) hits
- w.h.p, \(p \in (1 \pm \epsilon)\mu_{\epsilon,\delta} n \)
Transitive closure

Problem outline
- databases want size
- matrix multiply time
- compute reachibility set of each vertex, add

Sampling algorithm
- generate vertex samples until $\mu v \delta$ reachable from v
- deduce size of v's reachibility set.
- reachability test: $O(m)$.
- number of sample: n/size.
- $O(mn)$ per vertex—ouch!

Pipeline for all vertices simultaneously
- increase mean to $O(\log n/\epsilon^2)$,
- so $1/n^2$ failure
- $O(mn)$ for all vertices (still ouch).

Avoid wasting work
- after $O(n \log n)$ samples, every vertex has $\log n$ hits. No more needed.
- Send at most $\log n$ samples over an edge: $\tilde{O}(m)$

Minimum Cut

deterministic algorithms
- Max-flow
- Gabow

Min-cut implementation
- data structure for contractions
- alternative view—permutations.
- deterministic leaf algo

Recursion:
\[
\begin{align*}
p_{k+1} & = p_k - \frac{1}{4} p_k^2 \\
q_k & = 4/p_k + 1 \\
q_{k+1} & = q_k + 1 + 1/q_k
\end{align*}
\]
Minimum Cut

Min-cut

• saw RCA, $\tilde{O}(n^2)$ time

• Another candidate: Gabow’s algorithm: $\tilde{O}(mc)$ time on m-edge graph with min-cut c

• nice algorithm, if m and c small. But how could we make that happen?

• Similarly, for those who know about it, augmenting paths gives $O(mv)$ for max flow. Good if m, v small. How make happen?

• Sampling! What’s a good sample? (take suggestions, think about them.

• Define $G(p)$—pick each edge with probability p

Intuition:

• G has m edges, min-cut c

• $G(p)$ has pm edges, min-cut pc

• So improve Gabow runtime by p^2 factor!

What goes wrong? (pause for discussion)

• expectation isn’t enough

• so what, use chernoff?

 – min-cut has c edges

 – expect to sample $\mu = pc$ of them

 – chernoff says prob. off by ϵ is at most $2e^{-\epsilon^2\mu/4}$

 – so set $pc = 8\log n$ or so, deduce with high probability, no min-cut deviates.

• (pause for objections)

• yes, a problem: exponentially many cuts.

• so even though Chernoff gives “exponentially small” bound, accumulation of union bound means can’t bound probability of small deviation over all cuts.

Surprise! It works anyway.

• Theorem: if min cut c and build $G(p)$, then “min expected cut” is $\mu = pc$. Probability any cut deviates by more than ϵ is $O(n^2 e^{-\epsilon^2\mu/3})$.

 – So, if get μ around $12(\log n)/\epsilon^2$, all cuts within ϵ of expectation with high probability.

 – Do so by setting $p = 12(\log n)/c$
• Application: min-cut approximation.
• Theorem says a min-cut will get value at most $(1 + \epsilon)\mu$ whp
• Also says that any cut of original value $(1 + \epsilon)c/(1 - \epsilon)$ will get value at most $(1 + \epsilon)\mu$
• So, sampled graph has min-cut at most $(1 + \epsilon)\mu$, and whatever cut is minimum has value at most $(1 + \epsilon)c/(1 - \epsilon) \approx (1 + 2\epsilon)c$ in original graph.
• How find min-cut in sample? Gabow’s algorithm
 • in sample, min-cut $O((\log n)/\epsilon^2)$ whp, while number of edges is $O(m(\log n)/\epsilon^2c)$
 • So, Gabow runtime $\tilde{O}(m/\epsilon^2c)$
 • constant factor approx in near linear time.

Proof of Theorem
• Suppose min-cut c and build $G(p)$
• Lemma: bound on number of α-minimum cuts is $n^{2\alpha}$.
 – Base on contraction algorithm
• So we take as given: number of cuts of value less than αc is at most $n^{2\alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O(n^{2\alpha})$, get same result but messier.
• First consider n^2 smallest cuts. All have expectation at least μ, so prob any deviates
 is $e^{-c^2\mu/4} = 1/n^2$ by choice of μ
• Write larger cut values in increasing order c_1, \ldots
• Then $c_{n^{2\alpha}} > \alpha c$
• write $k = n^{2\alpha}$, means $\alpha_k = \log k/\log n^2$
• What prob c_k deviates? $e^{-c_k^2k/4} = e^{-c_k^2\mu/4}$
• By choice of μ, this is k^{-2}
• sum over $k > n^2$, get $O(1/n)$