Minimum Cut

deterministic algorithms
 • Max-flow
 • Gabow

Min-cut implementation
 • data structure for contractions
 • alternative view—permutations.
 • deterministic leaf algo

Recursion:

\[
\begin{align*}
 p_{k+1} &= p_k - \frac{1}{4}p_k^2 \\
 q_k &= \frac{4}{p_k} + 1 \\
 q_{k+1} &= q_k + 1 + \frac{1}{q_k}
\end{align*}
\]

Minimum Cut

Min-cut
 • saw RCA, \(\tilde{O}(n^2) \) time
 • Another candidate: Gabow’s algorithm: \(\tilde{O}(mc) \) time on \(m \)-edge graph with min-cut \(c \)
 • nice algorithm, if \(m \) and \(c \) small. But how could we make that happen?
 • Similarly, for those who know about it, augmenting paths gives \(O(mv) \) for max flow. Good if \(m, v \) small. How make happen?
 • Sampling! What’s a good sample? (take suggestions, think about them.
 • Define \(G(p) \)—pick each edge with probability \(p \)

Intuition:
 • \(G \) has \(m \) edges, min-cut \(c \)
 • \(G(p) \) has \(pm \) edges, min-cut \(pc \)
 • So improve Gabow runtime by \(p^2 \) factor!

What goes wrong? (pause for discussion)
 • expectation isn’t enough
• so what, use chernoff?
 – min-cut has c edges
 – expect to sample \(\mu = pc \) of them
 – chernoff says prob. off by \(\epsilon \) is at most \(2e^{-c^2\mu/4} \)
 – so set \(pc = 8\log n \) or so, deduce with high probability, no min-cut deviates.

• (pause for objections)
• yes, a problem: exponentially many cuts.
• so even though Chernoff gives “exponentially small” bound, accumulation of union bound means can’t bound probability of small deviation over all cuts.

Surprise! It works anyway.

• Theorem: if min cut \(c \) and build \(G(p) \), then “min expected cut” is \(\mu = pc \). Probability any cut deviates by more than \(\epsilon \) is \(O(n^2e^{-c^2\mu/3}) \).
 – So, if get \(\mu \) around \(12(\log n)/\epsilon^2 \), all cuts within \(\epsilon \) of expectation with high probability.
 – Do so by setting \(p = 12(\log n)/c \)

• Application: min-cut approximation.
• Theorem says a min-cut will get value at most \((1 + \epsilon)\mu \) whp
• Also says that any cut of original value \((1 + \epsilon)c/(1 - \epsilon) \) will get value at most \((1 + \epsilon)\mu \)
• So, sampled graph has min-cut at most \((1 + \epsilon)\mu \), and whatever cut is minimum has value at most \((1 + \epsilon)c/(1 - \epsilon) \approx (1 + 2\epsilon)c \) in original graph.

• How find min-cut in sample? Gabow’s algorithm
• in sample, min-cut \(O((\log n)/\epsilon^2) \) whp, while number of edges is \(O(m(\log n)/\epsilon^2c) \)
• So, Gabow runtime \(\tilde{O}(m/\epsilon^2c) \)
• constant factor approx in near linear time.

Proof of Theorem

• Suppose min-cut \(c \) and build \(G(p) \)
• Lemma: bound on number of \(\alpha \)-minimum cuts is \(n^{2\alpha} \).
 – Base on contraction algorithm

• So we take as given: number of cuts of value less than \(\alpha c \) is at most \(n^{2\alpha} \) (this is true, though probably slightly stronger than what you proved. If use \(O(n^{2\alpha}) \), get same result but messier.

2
• First consider n^2 smallest cuts. All have expectation at least μ, so prob any deviates is $e^{-\epsilon^2 \mu / 4} = 1/n^2$ by choice of μ

• Write larger cut values in increasing order c_1, \ldots

• Then $c_{\alpha k^2} > \alpha c$

• write $k = n^{2\alpha}$, means $\alpha_k = \log k / \log n^2$

• What prob c_k deviates? $e^{-\epsilon^2 \mu k^2 / 4} = e^{-\epsilon^2 \alpha_k \mu / 4}$

• By choice of μ, this is k^{-2}

• sum over $k > n^2$, get $O(1/n)$

Issue: need to estimate c.

Las Vegas:

• Tree pack sample? Note good enough: too few trees

• Partition into pieces, pack each one

• get $(1 - \epsilon)\mu$ trees in each piece, so $(1 - \epsilon) c$ total.

• So, run sampling alg till cut found and trees packed are within ϵ.

• happens whp first time, repeat if not. Expected number of iterations less that 2, so poly expected time.

Idea for exact:

• Las vegas algorithm gave approximately maximum packing

• how turn maximum? Gabow augmentations.

• Idea: run approx alg for some ϵ, then augment to optimum

• Gives faster algorithm.

• wait, faster algorithm could be used instead of Gabow’s in approximation algorithm to get faster approximation algorithm

• then could use faster approx alg (followed by augmentations) to get faster exact algorithm

• each algorithms seems to imply a faster one

• What is limit? Recursive algorithm

DAUG:

• describe alg
• give recurrence: $T(m, c) = 2T(m/2, c/2) + \tilde{O}(m\sqrt{c}) = \tilde{O}(m\sqrt{c})$

• Are we done? (wait for comment)

• No! Subproblem sizes are random variables

• Wait, in MST problem this didn’t matter.

• But that was because MST recurrence was linear, could use linearity of expectation

• Here, recurrence nonlinear. Dead.

Recursion Tree:

• expand all nodes

• depth of tree $O(\log m)$ since unlikely to get 2 edges at same leaf

• wlog keep $n \leq m$ by discarding isolated vertices

• successfull and unsuccessful augmentations

• telescoping of successful augmentations

• analyze “high nodes” where cut value near expectation

• analyze “low nodes” where cut values small (a fortiori) but rely mainly on having few edges.

Later work. Just have fun talking about where this went.

• Linear time cut by tree packing

• applications to max-flow

• current state of affairs, open problems.