Side channel attacks: historically worried about EM signals leaking.

- Ref: http://cryptome.org/nsa-tempest.pdf
- Broadly, systems may need to worry about many unexpected ways in which information can be revealed.

Example setting: a server (e.g., Apache) has an RSA private key.

- Server uses RSA private key (e.g., decrypt message from client).
- Something about the server’s computation is leaked to the client.

Many information leaks have been looked at:

- How long it takes to decrypt.
- How decryption affects shared resources (cache, TLB, branch predictor).
- Emissions from the CPU itself (RF, audio, power consumption, etc).

Side-channel attacks don’t have to be crypto-related.

- E.g., operation time relates to which character of password was incorrect.
- Or time related to how many common friends you + some user have on Facebook.
- Or how long it takes to load a page in browser (depends if it was cached).
- Or recovering printed text based on sound from dot-matrix printer.
 - Ref: https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers
- But attacks on passwords or keys are usually the most damaging.

Adversary can analyze information leaks, use it to reconstruct private key.

- Currently, side-channel attacks on systems described in the paper are rare.
 - E.g., Apache web server running on some Internet-connected machine.
 - Often some other vulnerability exists and is easier to exploit.
 - Slowly becoming a bigger concern: new side-channels (VMs), better attacks.
- Side-channel attacks are more commonly used to attack trusted/embedded hw.
 - E.g., chip running cryptographic operations on a smartcard.
 - Often these have a small attack surface, not many other ways to get in.
 - As paper mentions, some crypto coprocessors designed to avoid this attack.

What’s this paper’s contribution?

- Timing attacks known for a while.
- This paper: possible to attack standard Apache web server over the network.
- Uses lots of observations/techniques from prior work on timing attacks.
- To understand how this works, first let’s look at some internals of RSA...
RSA: high level plan
- Pick two random primes, p and q. Let n = p*q.
- A reasonable key length, i.e., |n| or |d|, is 2048 bits today.
- Euler’s function \(\phi(n) \): number of elements of \(\mathbb{Z}_n \) relatively prime to n.
 - Theorem [no proof here]: \(a^{\phi(n)} = 1 \mod n \), for all \(a \) and \(n \).
- So, how to encrypt and decrypt?
 - Pick two exponents \(d \) and \(e \), such that \(m^{e*d} = m \mod n \), which means \(e*d = 1 \mod \phi(n) \).
 - Encryption will be \(c = m^e \mod n \); decryption will be \(m = c^d \mod n \).
- How to get such \(e \) and \(d \)?
 - For \(n=pq \), \(\phi(n) = (p-1)(q-1) \).
 - Easy to compute \(d=1/e \), if we know \(\phi(n) \).
 - Extended Euclidean algorithm.
 - In practice, pick small \(e \) (e.g., 65537), to make encryption fast.
- Public key is \((n, e) \).
- Private key is, in principle, \((n, d) \).
 - Note: \(p \) and \(q \) must be kept secret!
 - Otherwise, adversary can compute \(d \) from \(e \), as we did above.
 - Knowing \(p \) and \(q \) also turns out to be helpful for fast decryption.
 - So, in practice, private key includes \((p, q) \) as well.

RSA is tricky to use "securely" -- be careful if using RSA directly!
- Ciphertexts are multiplicative
 - \(E(a)*E(b) = a^e * b^e = (ab)^e \).
 - Can allow adversary to manipulate encryptions, generate new ones.
- RSA is deterministic
 - Encrypting the same plaintext will generate the same ciphertext each time.
 - Adversary can tell when the same thing is being re-encrypted.
- Typically solved by "padding" messages before encryption.
 - Take plaintext message bits, add padding bits before and after plaintext.
 - Encrypt the combined bits (must be less than \(|n| \) bits total).
 - Padding includes randomness, as well as fixed bit patterns.
 - Helps detect tampering (e.g. ciphertext multiplication).

How to implement RSA?
- Key problem: fast modular exponentiation.
 - In general, quadratic complexity.
- Multiplying two 1024-bit numbers is slow.
- Computing the modulus for 1024-bit numbers is slow (1024-bit division).

Optimization 1: Chinese Remainder Theorem (CRT).
- Recall what the CRT says:
if \(x = a_1 \pmod{p} \) and \(x = a_2 \pmod{q} \), where \(p \) and \(q \) are relatively prime, then there's a unique solution \(x = a \pmod{pq} \). (and, there's an efficient algorithm for computing \(a \))

- Suppose we want to compute \(m = c^d \pmod{pq} \).
- Can compute \(m_1 = c^d \pmod{p} \), and \(m_2 = c^d \pmod{q} \).
- Then use CRT to compute \(m = c^d \pmod{n} \) from \(m_1, m_2 \); it's unique and fast.
- Computing \(m_1 \) (or \(m_2 \)) is \(~4x\) faster than computing \(m \) directly (~quadratic).
- Computing \(m \) from \(m_1 \) and \(m_2 \) using CRT is ~negligible in comparison.
- So, roughly a 2x speedup.

Optimization 2: Repeated squaring and Sliding windows.
- Naive approach to computing \(c^d \): multiply \(c \) by itself, \(d \) times.
- Better approach, called repeated squaring:
 - \(c^{(2x)} = (c^x)^2 \)
 - \(c^{(2x+1)} = (c^x)^2 \times c \)
 - To compute \(c^d \), first compute \(c^{(\text{floor}(d/2))} \), then use above for \(c^d \).
 - Recursively apply until the computation hits \(c^0 = 1 \).
 - Number of squarings: \(|d| \)
 - Number of multiplications: number of 1 bits in \(d \)
- Better yet (sometimes), called sliding window:
 - \(c^{(32x+1)} = (c^x)^{32} \times c \)
 - \(c^{(32x+3)} = (c^x)^{32} \times c^3 \)
 - \(... \)
 - \(c^{(32x+z)} = (c^x)^{32} \times c^z \), generally [where \(z \leq 31 \)]
 - Can pre-compute a table of all necessary \(c^z \) powers, store in memory.
 - The choice of power-of-2 constant (e.g., \(32 \)) depends on usage.
 - Costs: extra memory, extra time to pre-compute powers ahead of time.
 - Note: only pre-compute odd powers of \(c \) (use first rule for even).
 - OpenSSL uses 32 (table with 16 pre-computed entries).

Optimization 3: Montgomery representation.
- Reducing mod \(p \) each time (after square or multiply) is expensive.
 - Typical implementation: do long division, find remainder.
 - Hard to avoid reduction: otherwise, value grows exponentially.
- Idea (by Peter Montgomery): do computations in another representation.
 - Shift the base (e.g., \(c \)) into different representation upfront.
 - Perform modular operations in this representation (will be cheaper).
 - Shift numbers back into original representation when done.
 - Ideally, savings from reductions outweigh cost of shifting.
- Montgomery representation: multiply everything by some factor \(R \).
 - \(a \pmod{q} \leftrightarrow aR \pmod{q} \)
 - \(b \pmod{q} \leftrightarrow bR \pmod{q} \)
 - \(c = a*b \pmod{q} \leftrightarrow cR \pmod{q} = (aR * bR)/R \pmod{q} \)
Each mul (or sqr) in Montgomery-space requires division by R.

Why is modular multiplication cheaper in montgomery rep?

○ Choose R so division by R is easy: $R = 2^{|q|}$ (2^512 for 1024-bit keys).
○ Because we divide by R, we will often not need to do mod q.

- $|aR| = |q|$
- $|bR| = |q|$
- $|aR \times bR| = 2|q|$
- $|aR \times bR \mod R| = |q|$

○ How do we divide by R cheaply? Only works if lower bits are zero.
○ Observation: since we care about value mod q, multiples of q don’t matter.
○ Trick: add multiples of q to the number being divided by R, make low bits 0.

- For example, suppose $R=2^4$ (10000), $q=7$ (111), divide $x=26$ (11010) by R.
 - $x+2q = (binary) 101000$
 - $x+2q+8q = (binary) 1100000$
- Now, can easily divide by R: result is binary 110 (or 6).
- Generally, always possible:
 - Low bit of q is 1 (q is prime), so can "shoot down" any bits.
 - To "shoot down" bit k, add $2^k \times q$
 - To shoot down low-order bits l, add $q \times (l \times (-q^{-1}) \mod R)$
 - Then, dividing by R means simply discarding low zero bits.

○ One remaining problem: result will be $< R$, but might be $> q$.
 ○ If the result happens to be greater than q, need to subtract q.
 ○ This is called the "extra reduction".
 ○ When computing $x^d \mod q$, $Pr[extra\ reduction] = (x \mod q) / 2R$.
 ▪ Here, x is assumed to be already in Montgomery form.
 ▪ Intuition: as we multiply bigger numbers, will overflow more often.

Optimization 4: Efficient multiplication.

○ How to multiply 512-bit numbers?
○ Representation: break up into 32-bit values (or whatever hardware supports).
○ Naive approach: pair-wise multiplication of all 32-bit components.
 ○ Same as if you were doing digit-wise multiplication of numbers on paper.
 ○ Requires $O(nm)$ time if two numbers have n and m components respectively.
 ○ $O(n^2)$ if the two numbers are close.
○ Karatsuba multiplication: assumes both numbers have same number of components.
 ○ $O(n^{\log_2 3}) = O(n^{1.585})$ time.
 ○ Split both numbers (x and y) into two components (x_1, x_0 and y_1, y_0).
 ▪ $x = x_1 \times B + x_0$
 ▪ $y = y_1 \times B + y_0$
- E.g., B=2^32 when splitting 64-bit numbers into 32-bit components.
 - Naive: x*y = x1y1 * B^2 + x0y1 * B + x1y0 * B + x0y0
 - Four multiplies: O(n^2).
 - Faster:
 \[x*y = x1y1 \cdot (B^2+B) - (x1-x0)(y1-y0) \cdot B + x0y0 \cdot (B+1) = x1y1 \cdot B^2 + (- (x1-x0)(y1-y0) + x1y1 + x0y0) \cdot B + x0y0 \]
 - Just three multiplies, and a few more additions.
 - Recursively apply this algorithm to keep splitting into more halves.

- Meaningfully faster (no hidden big constants)
 - For 1024-bit keys, "n" here is 16 (512/32).
 - \(n^2 = 256 \)
 - \(n^{1.585} = 81 \)

- Multiplication algorithm needs to decide when to use Karatsuba vs. Naive.
- Two cases matter: two large numbers, and one large + one small number.
- OpenSSL: if equal number of components, use Karatsuba, otherwise Naive.
- In some intermediate cases, Karatsuba may win too, but OpenSSL ignores it, according to this paper.

How does SSL use RSA?
- Server's SSL certificate contains public key.
- Server must use private key to prove its identity.
- Client sends random bits to server, encrypted with server's public key.
- Server decrypts client's message, uses these bits to generate session key.
 - In reality, server also verifies message padding.
 - However, can still measure time until server responds in some way.

Figure of decryption pipeline on the server:

<table>
<thead>
<tr>
<th>CRT</th>
<th>Mod</th>
<th>Montgomery</th>
<th>Modular exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>c_0 = c mod q</td>
<td>c'_0 = c_0*R mod q</td>
<td>m'_0 = (c'_0)^d mod q</td>
</tr>
</tbody>
</table>

Use sliding window for bits of the exponent d

Use sliding window for bits of the exponent d

Karatsuba if c'_0 and q have same number of 32-bit parts

Extra reductions proportional to \(((c'_0)^z mod q) / 2R; z comes from sliding window

Then, compute m_0 = m'_0/R mod q.
Then, combine m_0 and m_1 using CRT to get m.
Then verify padding in m.
Finally, use payload in some way (SSL, etc).

Setup for the attack described in Brumley's paper.
• Victim Apache HTTPS web server using OpenSSL, has private key in memory.
• Connected to Stanford’s campus network.
• Adversary controls some client machine on campus network.
• Adversary sends specially-constructed ciphertext in msg to server.
 o Server decrypts ciphertext, finds garbage padding, returns an error.
 o Client measures response time to get error message.
 o Uses the response time to guess bits of q.
• Overall response time is on the order of 5 msec.
 o Time difference between requests can be around 10 usec.
• What causes time variations? Karatsuba vs normal; extra reductions.
• Once guessed enough bits of q, can factor n=p*q, compute d from e.
• About 1M queries seem enough to obtain 512-bit p and q for 1024-bit key.
 o Only need to guess the top 256 bits of p and q, then use another algorithm.

Attack from Brumley’s paper.
• Let $q = q_0 \ldots q_N$, where $N = |q|$ (say, 512 bits for 1024-bit keys).
• Assume we know some number j of high-order bits of q (q_0 through q_j).
• Construct two approximations of q, guessing q_{j+1} is either 0 or 1:
 o $g = q_0 \ldots q_j 0 0 0 0$
 o $g_{hi} = q_0 \ldots q_j 1 0 0 0$
• Get the server to perform modular exponentiation (g^d) for both guesses.
 o We know g is necessarily less than q.
 o If g and g_{hi} are both less than q, time taken shouldn't change much.
 o If g_{hi} is greater than q, time taken might change noticeably.
 ▪ g_{hi} mod q is small.
 ▪ Less time: fewer extra reductions in Montgomery.
 ▪ More time: switch from Karatsuba to normal multiplication.
 o Knowing the time taken can tell us if 0 or 1 was the right guess.
• How to get the server to perform modular exponentiation on our guess?
 o Send our guess as if it were the encryption of randomness to server.
 o One snag: server will convert our message to Montgomery form.
 o Since Montgomery's R is known, send $(g/R \mod n)$ as message to server.
• How do we know if the time difference should be positive or negative?
 o Paper seems to suggest it doesn't matter: just look for large diff.
 o Figure 3a shows the measured time differences for each bit's guess.
 o Karatsuba vs normal multiplication happens at 32-bit boundaries.
 o First 32 bits: extra reductions dominate.
 o Next bits: Karatsuba vs normal multiplication dominates.
 o At some point, extra reductions start dominating again.
• What happens if the time difference from the two effects cancels out?
 o Figure 3, key 3.
 o Larger neighborhood changes the balance a bit, reveals a non-zero gap.
• How does the paper get accurate measurements?
 o Client machine uses processor's timestamp counter (rdtsc on x86).
Measure several times, take the median value.
 - Not clear why median; min seems like it would be the true compute time.
 - One snag: relatively few multiplications by g, due to sliding windows.
 - Solution: get more multiplications by values close to g (+ same for g_{hi}).
 - Specifically, probe a "neighborhood" of g ($g, g+1, ..., g+400$).
- Why probe a 400-value neighborhood of g instead of measuring g 400 times?
 - Consider the kinds of noise we are trying to deal with.
 - Noise unrelated to computation (e.g. interrupts, network latency).
 - This might go away when we measure the same thing many times.
 - See Figure 2a in the paper.
 - "Noise" related to computation.
 - E.g., multiplying by g^3 and g_{hi}^3 in sliding window takes diff time.
 - Repeated measurements will return the same value.
 - Will not help determine whether mul by g or g_{hi} has more reductions.
 - See Figure 2b in the paper.
 - Neighborhood values average out 2nd kind of noise.
 - Since neighborhood values are nearby, still has ~same # reductions.

How to avoid these attacks?
- Timing attack on decryption time: RSA blinding.
 - Choose random r.
 - Multiply ciphertext by $r^e \mod n$: $c' = c*r^e \mod n$.
 - Due to multiplicative property of RSA, c' is an encryption of $m*r$.
 - Decrypt ciphertext c' to get message m'.
 - Divide plaintext by r: $m = m'/r$.
 - About a 10% CPU overhead for OpenSSL, according to Brumley's paper.
- Make all code paths predictable in terms of execution time.
 - Hard, compilers will strive to remove unnecessary operations.
 - Precludes efficient special-case algorithms.
 - Difficult to predict execution time: instructions aren't fixed-time.
- Can we take away access to precise clocks?
 - Yes for single-threaded attackers on a machine we control.
 - Can add noise to legitimate computation, but attacker might average.
 - Can quantize legitimate computations, at some performance cost.
 - But with "sleeping" quantization, throughput can still leak info.

How worried should we be about these attacks?
- Relatively tricky to develop an exploit (but that's a one-time problem).
- Possible to notice attack on server (many connection requests).
 - Though maybe not so easy on a busy web server cluster?
- Adversary has to be close by, in terms of network.
 - Not that big of a problem for adversary.
• Can average over more queries, co-locate nearby (Amazon EC2), run on a nearby bot or browser, etc.

• Adversary may need to know the version, optimization flags, etc of OpenSSL.
 o Is it a good idea to rely on such a defense?
 o How big of an impediment is this?

• If adversary mounts attack, effects are quite bad (key leaked).

Other types of timing attacks.
• Page-fault timing for password guessing [Tenex system]
 o Suppose the kernel provides a system call to check user's password.
 ▪ Checks the password one byte at a time, returns error when finds mismatch.
 o Adversary aligns password, so that first byte is at the end of a page, rest of password is on next page.
 o Somehow arrange for the second page to be swapped out to disk.
 ▪ Or just unmap the next page entirely (using equivalent of mmap).
 o Measure time to return an error when guessing password.
 ▪ If it took a long time, kernel had to read in the second page from disk.
 ▪ [Or, if unmapped, if crashed, then kernel tried to read second page.]
 ▪ Means first character was right!
 o Can guess an N-character password in 256*N tries, rather than 256^N.

• Cache analysis attacks: processor's cache shared by all processes.
 o E.g.: accessing one of the sliding-window multiples brings it in cache.
 o Necessarily evicts something else in the cache.
 o Malicious process could fill cache with large array, watch what's evicted.
 o Guess parts of exponent (d) based on offsets being evicted.

• Cache attacks are potentially problematic with "mobile code".
 o NaCl modules, Javascript, Flash, etc running on your desktop or phone.

• Network traffic timing / analysis attacks.
 o Even when data is encrypted, its ciphertext size remains ~same as plaintext.
 o Recent papers show can infer a lot about SSL/VPN traffic by sizes, timing.
 o E.g., Fidelity lets customers manage stocks through an SSL web site.
 ▪ Web site displays some kind of pie chart image for each stock.
 ▪ User's browser requests images for all of the user's stocks.
 ▪ Adversary can enumerate all stock pie chart images, knows sizes.
 ▪ Can tell what stocks a user has, based on sizes of data transfers.
 o Similar to CRIME attack mentioned in guest lecture earlier this term.

References:
• http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf
• http://ed25519.cr yp.to/