This problem set is due on: Wednesday, February 16, 2005. Note that Problem 5 is optional. If you turn in a solution to Problem 5, your lowest score among the five problems will be dropped when determining your grade for this problem set.

Problem 1

Suppose \(p \) is a prime and \(g \) and \(h \) are both generators of \(\mathbb{Z}_p^* \). Prove or disprove the following statements about equality of probability distributions:

A: \(\{ x \leftarrow \mathbb{Z}_p^* : g^x \mod p \} = \{ x \leftarrow \mathbb{Z}_p^* : y \leftarrow \mathbb{Z}_p^* : g^{xy} \mod p \} \)

B: \(\{ x \leftarrow \mathbb{Z}_p^* : g^x \mod p \} = \{ x \leftarrow \mathbb{Z}_p^* : h^x \mod p \} \)

C: \(\{ x \leftarrow \mathbb{Z}_p^* : g^x \mod p \} = \{ x \leftarrow \mathbb{Z}_p^* : x^g \mod p \} \)

D: \(\{ x \leftarrow \mathbb{Z}_p^* : x^g \mod p \} = \{ x \leftarrow \mathbb{Z}_p^* : x^{gh} \mod p \} \)

Problem 2

Suppose that the Prime Discrete Logarithm Problem is easy. That is, suppose that there exists a probabilistic, polynomial time algorithm \(A \) that, on inputs \(p, g \) and \(g^x \mod p \), outputs \(x \) if \(p \) is a prime, \(g \) is a generator of \(\mathbb{Z}_p^* \) and \(g^x \mod p \) is prime. Show that there exists a probabilistic polynomial-time algorithm, \(B \), that solves the Discrete Logarithm Problem.

Problem 3

We define the Lily problem as: given two integers \(n \) and \(S \) determine whether \(S \) is relatively prime to \(\phi(n) \). Prove that if it is hard to determine on inputs two integers \(n \) and \(e \) whether \(e \) is relatively prime with \(\phi(n) \), then the RSA function is hard to invert.
Problem 4: Factoring

Let O_n be an oracle that on input x returns a square root of $x \mod n$, if one exists, and ⊥ otherwise. Prove that there exists a probabilistic polynomial-time algorithm that on input an integer n and access to O_n outputs n’s factorization.

Problem 5: Factoring and OWF (OPTIONAL)

Prove that if factoring is hard, then one-way functions (as defined in class) exist.