Reference Resolution

Regina Barzilay

February 18, 2004
The Salesgirl (Burns and Allen)

Gracie: And then Mr. and Mrs. Jones were having matrimonial trouble, and my brother was hired to watch Mrs. Jones.

George: Well, I am imagine she was a very attractive woman.

Gracie: She was, and my brother watched her day and night for six month.

George: Well, what happened?

Gracie: She finally got a divorce.

George: Mrs. Jones?

Gracie: No, my brother’s wife.
Reference Resolution

• Task: determine which noun phrases refer to each real-world entity mentioned in a document

• Goal: partition noun phrases in a text into coreference equivalence classes, with one cluster for each set of coreferent NPs

• Difference between anaphora and coreference

In the previous example: \{Mrs. Jones, she, she, Mrs. Jones\}, \{my brother, my brother\}, \{my brother’s wife\}
Today’s Topics

- Motivation
- Types of referential expressions
- Syntactic and semantic constraints on coreference
- Preferences in coreference interpretation
- Algorithm’s for coreference resolution
Motivation

- Information extraction
- Question-Answering
- Machine-Translation
 pronoun in the Malay language is translated by its antecedent (Mitkov, 1999)
- Summarization
When something goes wrong

In the past decade almost all Islamic revivalist movements have been labeled fundamentalists, whether they be of extremist or moderate origin. The widespread impact of the term is obvious from the following quotation from one of the most influential Encyclopedias under the title ‘Fundamentalist’: “The term fundamentalist has... been used to describe members of militant Islamic groups.” Why would the media use this specific word, so often with relation to Muslims? Most of them are radical Baptist, Lutheran and Presbyterian groups.
When something goes wrong

Why would the media use this specific word, so often with relation to Muslims?

Before the term fundamentalist was branded for Muslims, it was, and still is, being used by certain Christian denominations. Most of them are radical Baptist, Lutheran and Presbyterian groups.
Types of referential expressions: Nouns

• Indefinite Noun Phrases:
 I saw an Acura Integra today.
 Some Acura Integras were being unloaded.
 I saw this awesome Acura Integra today.

• Definite Noun Phrases
 I saw an Acura Integra today. The Integra was white and needed to be washed.
 The fastest car in the Indianapolis 500 was an Integra.
Pronouns

Stronger constrains on using pronouns than on noun phrase references.

- Require a high degree of activation from a referent
- Have short activation span

a. John went to Bob’s party, and parked next to a Acura Integra.
b. He went inside and talked to Bob for more than an hour.
a. Bob told him that he recently got engaged.
b. ??He also said that he bought *it* yesterday.
Demonstratives and One Anaphora

- Demonstratives (this, that) capture spatial proximity
 I like this one, better than that

- One Anaphora evokes a new entity into the discourse whose description is dependent of this new entity
 I saw no less that 6 Acuras today. Now I was one.
Troublemakers

• Inferrables: inferential relation to an evoked entity
 I almost bought an Acura today, but a door had a dent and the engine seemed noisy.

• Discontinuous Sets: refer to entities that do not form a set in a text
 John has an Acura, and Mary has a Mazda. They drive them all the time.

• Generics: refer to general set of entities (in contrast to a specific set mentioned in text)
 I saw no less than six Acuras today. They are the coolest cars.
Syntactic Constraints on Coreference

- **Number Agreement**
 * John has a new Acura. They are red.
 John has three New Acuras. It is red.

- **Person and Case Agreement**
 * John and Mary have Acuras. We love them.
 You and I have Acuras. We love them.
Syntactic Constraints

- Gender Agreement
 John has an Acura. It is attractive.

- Syntactic Agreement
 John bought himself a new Acura.
 John bought him a new Acura.
Semantic Constraints

- Selectional restrictions of the verb on its arguments
 (1) John parked his Acura in the garage. He had driven it around for hours.
 (2) John parked his Acura in the garage. It is incredibly messy, with old bike and car parts lying around everywhere.
 (3) John parked his Acura in downtown Beverly Hills. It is incredibly messy, with old bike and car parts lying around everywhere.
Preferences in Pronoun Interpretation

- Recency: Entities introduced in recent utterances are more salient than those introduced further back.
 John has an Integra. Bill has a Legend. Mary likes to drive it.

- Repeated mention: Entities that have been focus on in the prior discourse are more likely to continue to be focused on in subsequent discourse.
 John needed a car to get his new job. He decided that he wanted something sporty. Bill went to the Acura dealership with him. He bought an Integra.
Preferences in Pronoun Interpretation

- Grammatical Role: Hierarchy of candidate entities based on their grammatical role

 John went to the Acura dealership with Bill. He bought an Integra.
 Bill went to the Acura dealership with John. He bought an Integra.

- Parallelism:

 Mary went with Sue to the Acura dealership. Sally went with her to the Mazda dealership.
Preferences in Pronoun Interpretation

Verb Semantics: emphasis on one of verb’s arguments

- “implicit causality” of a verb causes change in salience of verb arguments

 John telephoned Bill. He lost the pamphlet on Acuras.

 John criticized Bill. He lost the pamphlet on Acuras.

- thematic roles (Goal, Source) cause change in salience of verb arguments

 John seized the Acura pamphlet from Bill. He loves reading about cars.

 John passed the Acura pamphlet to Bill. He loves reading about cars.
Generic Algorithm

- Identification of Discourse Entities
 Identify nouns and pronouns in text

- Characterization of Discourse Entities
 Compute for each discourse entity NP\(_i\) a set of values from \(\{K_{i1}, \ldots, k_{im}\}\) from \(m\) knowledge sources

- Anaphoricity Determination
 Eliminate non-anaphoric expressions to cut search space

- Generation of Candidate Antecedents
 Compute for each anaphoric NP\(_j\) a list of candidate antecedents \(C_j\)
Generic Algorithm (cont.)

- **Filtering**
 Remove all the members of C_j that violate reference constraints

- **Scoring/Ranking**
 Order the candidates based on preferences and soft constraints

- **Searching/Clustering**
 Clustering of instances with the same antecedent
Reference Resolution: Trends

- Knowledge-Rich Approaches vs Knowledge-Lean Approaches
- Semi-automatic Fully-Automatic Preprocessing
- Small-scale vs Large-Scale Evaluation
Knowledge-Lean Multi-strategy Approach

(Lappin&Leass, 1994)

- Integrates the effects of the recency and syntactically-based preferences
- Doesn’t rely on semantic or pragmatic knowledge
- Follows greedy strategy
- Two stages: discourse model update and pronoun resolution
Discourse Model Update

(Lappin & Leass, 1994)

- Add every new discourse entity to discourse model
- Update its value based on salience factors
- Cut in half recency values when process new entity (recency enforcement)
Salience Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence Recency</td>
<td>100</td>
</tr>
<tr>
<td>Subject Emphasis</td>
<td>80</td>
</tr>
<tr>
<td>Existential Emphasis</td>
<td>70</td>
</tr>
<tr>
<td>Accusative</td>
<td>50</td>
</tr>
<tr>
<td>Indirect Object</td>
<td>40</td>
</tr>
<tr>
<td>Non-adverbial Emphasis</td>
<td>50</td>
</tr>
<tr>
<td>Head-noun Emphasis</td>
<td>80</td>
</tr>
</tbody>
</table>

Reference Resolution 23/??
Syntactic Factors

subject > existential predicate nominal > object > indirect object > demarcated adverbial PP

1. An Acura Integra is parked on the lot. (subject)
2. There is an Acura Integra parked in the lot.
3. ...
4. Inside his Acura Integra, John kissed Mary. (demarcated adverbial PP)

Penalty for non-head occurrences
Score for equivalence classes
Algorithm

1. Remove potential referents that do not agree in number or gender with the pronoun
2. Remove potential referents that do not pass intrasentential syntactic coreference constraints
3. Update the total salience value of the referent
4. Select the referent with the highest value

Accuracy on unseen data: 86%
Clustering for Coreference

(Cardie&Wagstaff:1999)

• Each group of coreferent noun phrases defines an equivalence class

• Distance measure incorporates “linguistic intuition” about similarity of noun phrases

• Hard constraints enforce clustering construction
Instance Representation

Based noun phrases (automatically computed) are represented with 11 features:

- Individual Words
- Head Word
- Position
- Pronoun type (nominative, accusative)
- Semantic Class: Time, City, Animal, Human, Object (WordNet)
- Gender (WordNet, specified list)
- Animacy (based on WordNet)
Distance Metric

\[\text{dist}(NP_i, NP_j) = \sum_f w_f \times \text{incomp}_f(NP_i, NP_j) \]
Clustering Algorithm

- Initialization: every noun is a singleton
- From right to left, compare each noun to all proceeding clusters
- Combine “close enough” clusters unless there exist any incompatible NP

Example: The chairman spoke with Ms. White. He ...
Results

MUC-6 (30 documents): Recall 48.8\%, Precision 57.4\%, F-measure 52.8\%
Baseline: 34.6\%, 69.3\%, 46.1\%
Types of Mistakes:

- Parsing mistakes
- Coarse entity representation and mistakes in feature computation
- Greedy nature of the algorithm
Supervised Learning

(Soon et al., 2001)

- Decision Tree Induction
- Shallow feature representation (12 features):
 - “corrective” clustering
- Significant performance gain over rule-based algorithms
Adding Linguistic Knowledge

Rich Linguistic representation for learning (Ng & Cardie 2002)

- 53 features
- manual feature selection
- significant gain in performance over (Soon et al., 2001)