Today

- Asymptotically good codes.
- Random/Greedy codes.
- Some impossibility results.

Rate and Relative Distance

Recall the four integer parameters

- (Block) Length of code n
- Message length of code k
- Minimum Distance of code d
- Alphabet size q

Code with above parameters referred to as $(n, k, d)_q$ code. If code is linear it is an $[n, k, d]_q$ code.

(Deviation from standard coding non-linear codes are referred to by number of codewords.
so a linear $[n, k, d]_q$ with the all zeroes word

deleted would be an $(n, q^k - 1, d)_q$ code, while we would have it as an $(n, k - \epsilon, d)_q$ code.)

Today will focus on the normalizations:

- Rate $R \overset{\text{def}}{=} k/n$.
- Relative Distance $\delta \overset{\text{def}}{=} d/n$.

Main question(s): How does R vary as function of δ, and how does this variation depend on q?

Impossibility result 1: Singleton Bound

Note: Singleton is a person’s name! Not related to proof technique. Should be called "Projection bound".

Main result: $R + \delta \leq 1$.

More precisely, for any $(n, k, d)_q$ code, $k + d \leq n + 1$.

Proof: Take an $(n, k, d)_q$ code and project on to $k - 1$ coordinates. Two codewords must project to same sequence (PHP). Thus these two codewords differ on at most $n - (k - 1)$ coordinates. Thus $d \leq n - k + 1$.
Recall from lecture 1, Hamming proved a bound for binary codes:

Define $\text{Vol}_q(n, r)$ to be volume of ball of radius r in Σ^n, where $|\Sigma| = q$.

Then Hamming claimed $2^k \cdot \text{Vol}_2(n, (d - 1)/2) \leq 2^n$.

Asymptotically $R + H_2(\delta/2) \leq 1$.

q-ary generalization:

$q^k \cdot \text{Vol}_q(n, (d - 1)/2) \leq q^n$.

Asymptotically $R + H_q(\delta/2) \leq 1$, where $H_q(p) = -p \log_q p - (1 - p) \log_q (1 - p) + p \log_q (q - 1)$.

The random code

Recall the implication of Shannon’s theorem:
Can correct p fraction of (random) error, with encoding algorithms of rate $1 - H(p)$. Surely this should give a nice code too? Will analyze below.

Code: Pick 2^k random codewords in $\{0, 1\}^n$. Lets analyze distance.

The random code

Lets pick c_1, \ldots, c_K at random from $\{0, 1\}^n$ and consider the probability that they are all pairwise hope they are at distance $d = \delta n$.

Let X_i be the indicator variable for the event that the codeword c_i is at distance less than d from some codeword c_j for $j < i$.

Note that the probability that $X_i = 1$ is at most $(i - 1) \cdot 2^{H(\delta) \cdot n}/2^n$.

Thus the probability that there exists an i such that $X_i = 1$ is at most $\sum_{i=1}^K (i - 1) \cdot 2^{H(\delta) - 1 \cdot n}$.

The final quantity above is roughly $2^{(2R + H(\delta) - 1) \cdot n}$ and thus we have that we can get codes of rate R with relative distance δ provided $2R + H(\delta) < 1$.
A better random code

The bound we have so far only says we can get codes of rate $\frac{1}{2}$ as the relative distance approaches 0. One would hope to do better.

However, we don’t know of better ways to estimate either the probability that $X_i = 1$, or the probability that $\{\exists i \mid X_i = 1\}$.

Turns out, a major weakness is in our interpretation of the results. Notice that if $X_i = 1$, it does not mean that the code we found is totally bad. It just means that we have to throw out the word c_i from our code. So rather than analyzing the probability that all X_is are 0, we should analyze the probability of the event $\sum_{i=1}^{K} X_i \geq K/2$. If we can bound this probability away from 1 for some K, then it means that there exist codes with $K/2$ codewords that have distance at least d. Furthermore if the probability that $X_K = 1$ is less than $1/10$, we have that the probability that $\sum_{i=1}^{K} X_i > K/2$ is at most $\frac{1}{5}$ (by Markov’s Inequality) and so it suffices to have $E[X_K] = K 2^{(H(\delta) - 1)n} \leq \frac{1}{10}$. Thus, we get that if $R + H(\delta) < 1$ then there exists a code with rate R and distance δ.

In the Problem Set, we will describe many other proofs of this fact.