Maintaining SP Relationships Efficiently, on-the-fly

Jeremy Fineman
The Problem

- Fork-Join (e.g. Cilk) programs have threads that operate either in series or logically parallel.
- Want to query relationship between two threads as the program runs.
- For example, Nondeterminator uses relationship between two threads as basis for determinacy race.
Parse Tree

- Represent SP-DAG as a parse tree
- S nodes show series relationships
- P nodes are parallel relationships
Least Common Ancestor

• SP-Bags uses LCA lookup.
• LCA of \(b \) and \(d \) is an S-node
 – So \(b \) and \(d \) are in series
• Cost is \(\alpha(v,v) \) per query (in Nondeterminator)
Two Complementary Walks

- At S-node, always walk left then right
- At P-node, can go left then right, or right then left
Two Complementary Walks

- Produce two orders of threads:
 - $a b c d$
 - $a c b d$
- Notice $b || c$, and orders differ between b and c.
Two Complementary Walks

- Claim: If e_1 precedes e_2 in one walk, and e_2 precedes e_1 in the other, then $e_1 \parallel e_2$.
Maintaining both orders in a single tree walk

• Walk of tree represents execution of program.
 – Can execute program twice, but execution could be nondeterministic.
 – Instead, maintain both thread orderings on-the-fly, in a single pass.
Order Maintenance Problem

• We need a data structure which supports the following operations:
 – Insert(X,Y): Place Y after X in the list.
 – Precedes(X,Y): Does X come before Y?
Naïve Order Maintenance Structure

- Naïve Implementation is just a linked list
Naïve Order Maintenance Insert

- Insert(X,Y) does standard linked list insert
Naïve Order Maintenance Insert

- Insert(X, Y) does standard linked list insert
Naïve Order Maintenance Insert

- Insert(X,Y) does standard linked list insert
Naïve Order Maintenance Query

• Precedes(X,Z) looks forward in list.
Naïve Order Maintenance Query

• Precedes(X,Z) looks forward in list.
Naïve Order Maintenance Query

• Precedes(X,Z) looks forward in list.
Naïve Order Maintenance Query

- $\text{Precedes}(X, Z)$ looks forward in list.
The algorithm

- Recall, we are thinking in terms of parse tree.
- Maintain two order structures.
- When executing node x:
 - Insert children of x after x in the lists.
 - Ordering of children depends on whether x is an S or P node.
Example

Order 1:

Order 2:
Example

Order 1: S_1

Order 2: S_1
Example

Order 1: $S_1 \rightarrow S_2 \rightarrow d$

Order 2: $S_1 \rightarrow S_2 \rightarrow d$
Example

Order 1: \(\text{S}_1 \rightarrow \text{S}_2 \rightarrow \text{d} \)

Order 2: \(\text{S}_1 \rightarrow \text{S}_2 \rightarrow \text{d} \)
Example

Order 1: \(S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d \)

Order 2: \(S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d \)
Example

Order 1: \(S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d \)

Order 2: \(S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d \)
Example

Order 1: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d$

Order 2: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow d$
Example

Order 1: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow b \rightarrow c \rightarrow d$

Order 2: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow c \rightarrow b \rightarrow d$
Example

Order 1:
S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow b \rightarrow c \rightarrow d

Order 2:
S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow c \rightarrow b \rightarrow d
Example

Order 1: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow b \rightarrow c \rightarrow d$

Order 2: $S_1 \rightarrow S_2 \rightarrow a \rightarrow P \rightarrow c \rightarrow b \rightarrow d$
Analysis

- Correctness does not depend on execution
 - Any valid serial or parallel execution produces correct results.
 - Inserts after x in orders only happen when x executes.
 - Only one processor will ever insert after x.
- Running time depends on implementation of order maintenance data structure.
Serial Running Time

- Current Nondeterminator does serial execution.
- Can have $O(T_1)$ queries and inserts.
- Naïve implementation is
 - $O(n)$ time for query of n-element list.
 - $O(1)$ time for insert.
 - Total time is very poor: $O(T_1^2)$
Use Dietz and Sleator Order Maintenance Structure

• Essentially a linked list with labels.
• Queries are $O(1)$: just compare the labels.
• Inserts are $O(1)$ amortized cost.
 – On some inserts, need to perform relabel.
• $O(T_1)$ operations only takes $O(T_1)$ time.
Parallel Problem

• Dietz and Sleator relabels on inserts
 – Does not work concurrently.
• Lock entire structure on insert?
 – Query is still $O(1)$.
 – Single relabel can cost $O(T_1)$ operations.
 • Critical path increases to $O(T_1)$
 • Running time is $O(T_1/p + T_1)$.
Parallel Problem Solution

• Leverage the Cilk scheduler:
 – There are only $O(pT_\infty)$ steals
• There is no contention on subcomputations done by single processor between steals.
 – We do not need to lock every insert.
Parallel Problem Solution

- Top level is global ordering of subcomputations.
- Bottom level is local ordering of subcomputation performed on single processor.
- On a steal, insert $O(1)$ nodes into global structure.

Global Structure
Size: $O(pT_\infty)$
Parallel Running Time

- An insert into a local order structure is still $O(1)$.
- An insert into the global structure involves locking the entire global structure.
 - May need to wait for p processors to insert serially.
 - Amortized cost is $O(p)$ per insert.
 - Only $O(pT_\infty)$ inserts into global structure.
- Total work and waiting time is $O(T_1 + p^2T_\infty)$
 - Running time is $O(T_1/p + pT_\infty)$
Questions?