Fast Fourier Transform: Practical aspects and Basic Architectures

Lecture 9
Vladimir Stojanović

Massachusetts Institute of Technology

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Multiplication complexity per output point

- CTFFT and SRFFT

CTFFT and SRFFT

- radix 2
- radix 4
- split-radix
- lower bound

Figure by MIT OpenCourseWare.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Multiplies and adds

<table>
<thead>
<tr>
<th>N</th>
<th>Radix 2</th>
<th>Radix 4</th>
<th>SRFFT</th>
<th>PFA</th>
<th>Winograd</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>152</td>
<td>148</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>408</td>
<td></td>
<td>388</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>60</td>
<td>976</td>
<td>888</td>
<td>888</td>
</tr>
<tr>
<td>64</td>
<td>120</td>
<td>2504</td>
<td>2308</td>
<td>2076</td>
<td>2076</td>
</tr>
<tr>
<td>128</td>
<td>504</td>
<td>5896</td>
<td>5380</td>
<td>4812</td>
<td>5016</td>
</tr>
<tr>
<td>1008</td>
<td>1526</td>
<td>13566</td>
<td>12292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>30728</td>
<td>28336</td>
<td>27652</td>
<td>29548</td>
<td>34668</td>
</tr>
<tr>
<td>2048</td>
<td>68616</td>
<td></td>
<td>61444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2520</td>
<td></td>
<td></td>
<td></td>
<td>84076</td>
<td>99628</td>
</tr>
</tbody>
</table>

Real multiplies

<table>
<thead>
<tr>
<th>N</th>
<th>Radix 2</th>
<th>Radix 4</th>
<th>SRFFT</th>
<th>PFA</th>
<th>Winograd</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>32</td>
<td>88</td>
<td></td>
<td>68</td>
<td>200</td>
<td>136</td>
</tr>
<tr>
<td>64</td>
<td>264</td>
<td>208</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>712</td>
<td>516</td>
<td></td>
<td>460</td>
<td>276</td>
</tr>
<tr>
<td>128</td>
<td>240</td>
<td></td>
<td></td>
<td>1100</td>
<td>632</td>
</tr>
<tr>
<td>256</td>
<td>1800</td>
<td>1392</td>
<td>1284</td>
<td>2524</td>
<td>1572</td>
</tr>
<tr>
<td>504</td>
<td>4360</td>
<td>3076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008</td>
<td>10248</td>
<td>7856</td>
<td>7172</td>
<td>5804</td>
<td>3548</td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>16388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>23560</td>
<td></td>
<td></td>
<td>17660</td>
<td>9492</td>
</tr>
</tbody>
</table>

Real adds

Figure by MIT OpenCourseWare.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].
Structural considerations

- How to compare different FFT algorithms?
- Many metrics to choose from

- The ease of obtaining the inverse FFT
- In-place computation
- Regularity
 - Computation
 - Interconnect
- Parallelism and pipelining
- Quantization noise
Inverse FFT

- FFTs often used for computing FIR filtering
 - Fast convolution (FFT + pointwise multiply + IFFT)
- In some applications (like 802.11a)
 - Can reuse FFT block to do the IFFT (half-duplex scheme)
- Simple trick [Duhamel88]
 - Swap the real and imaginary inputs and outputs
 - If FFT(x_R, x_I, N) computes the FFT of sequence $x_R(k) + jx_I(k)$
 - Then FFT(x_I, x_R, N) computes the IFFT of $jx_R(k) + x_I(k)$

$$
X_k = \sum_{n=0}^{N-1} x_n W_N^{nk} = \text{DFT}_k \{ x_n \} \\
x_n' = \sum_{k=0}^{N-1} X_k W_N^{-nk} = \text{IDFT}_n \{ X_k \}
$$

$$
x_n^* = \sum_{k=0}^{N-1} X_k^* W_N^{nk} \quad x_n = a_n + j \cdot b_n \Rightarrow j \cdot x_n^* = b_n + j \cdot a_n
$$

$$
j \cdot x_n'^* = \sum_{k=0}^{N-1} j \cdot X_k^* W_N^{nk}
$$

$$
x_n' = j \left[\sum_{k=0}^{N-1} (jX_k^*) W_N^{nk} \right]^*
$$

Exchange the real and imag part

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
In-place computation

- Most algorithms allow in-place computation
 - Cooley-Tukey, SRFFT, PFA
 - No auxiliary storage of size dependent on N is needed
 - WFTA (Winograd Fourier Transform Algorithm) does not allow in-place computation
 - A drawback for large sequences

- Cooley-Tukey and SRFFT are most compatible with longer size FFTs
Regularity, parallelism

- **Regularity**
 - Cooley-Tukey FFT very regular
 - Repeat butterflies of same type
 - Sums and twiddle multiplies
 - SRFFT slightly more involved
 - Different butterfly types in parallel
 - e.g. radix-2 and radix-4 used in parallel on even/odd samples
 - PFA even more involved
 - Repetitive use of more complicated modules (like cyclic convolution, for prime length DFTs)
 - WFTA most involved
 - Repetition of parts of the cyclic conv. modules from PFA

- **Parallelization**
 - Fairly easy for C-TFFT and SRFFT
 - Small modules applied on sets of data that are separable and contiguous
 - More difficult for PFA
 - Data required for each module not in contiguous locations
Quantization noise

- Roundoff noise generated by finite precision of operations inside FFT (adds, multiplies)
- CTFFT (lengths 2^n)
 - Four error sources per butterfly (variance $2^{-2B}/12$)
 - Total variance per butterfly $2^{-2B}/3$
 - Each output node receives signals from a total of $N-1$ butterflies in the flow graph
 (N/2 from the first stage, N/4 in the second, …)
 - Total variance for each output $\sim N/3 \cdot 2^{-2B}$
 - Assuming input power $1/3N^2$ ($|x(n)|<1/N$ to avoid overflow)
 - Output power is $1/3N$
 - Error-to-signal ratio is then $N^2 \cdot 2^{-2B}$ (needs 1 additional bit per stage to maintain SER)
 - Since a maximum magnitude increases by less than 2x from stage to stage we can prevent the overflow by requiring that $|x(n)|<1$ and scaling by $1/2$ from stage-to-stage
 - The output will be $1/N$ of the previous case, but the input magnitude can be Nx larger, improving the SER
 - Error-to-signal ratio is then $4N \cdot 2^{-2B}$ (needs 1/2 additional bit per stage to maintain SER)
 - Radix-4 and SRFFT generate less roundoff noise than radix-2
- WFTA
 - Fewer multiplications (hence fewer noise sources)
 - More difficult to include proper rescaling in the algorithm
 - Error-to-signal ratio is higher than in CTFFT or SRFFT
 - Two more bits are necessary to represent data in WFTA for same error order as CTFFT

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].
Particular cases

- DFT algorithms for real data sequence x_k
 - X_k has Hermitian symmetry ($X_{N-k}=X_k^*$)
 - X_0 is real, and when N even, $X_{N/2}$ real as well
 - N input values map to
 - 2 real and $N/2-1$ complex conjugate values when N even
 - 1 real and $(N-1)/2$ complex conjugate values when N odd

- Can exploit the redundancy
 - Reduce complexity and storage by a factor of 2
 - If take the real DFT of x_R and x_I separately
 - $2N$ additions are sufficient to obtain complex DFT
 - Goal to obtain real DFT with half multiplies and half adds
 - Example DIF SRFFT
 - X_{2k} requires half-length DFT on real data
 - Then b/c of Hermitian symmetry $X_{4k+1}=X_{4(N/4-k-1)+3}^*$
 - Only need to compute one DFT of size $N/4$ (not two)
DFT pruning

- In practice, may only need to compute a few tones
 - Or only a few inputs are different from zero
 - Typical cases: spectral analysis, interpolation, fast conv
 - Computing a full FFT can be wasteful

- Goertzel algorithm
 - Can be obtained by simply pruning the FFT flow graph
 - Alternately, looks just like a recursive 1-tap filter for each tone

\[x(n) \rightarrow + \rightarrow X(k) \]
\[z^{-1} \]
\[W_N^{-k} \]
Related transforms

- Mostly focused on efficient matrix-vector product involving Fourier matrix

\[
\begin{bmatrix}
 X_0 \\
 X_1 \\
 X_2 \\
 \vdots \\
 X_{N-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & W_N & W_N^2 & \cdots & W_N^{N-1} \\
 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)(N-1)}
\end{bmatrix} \times
\begin{bmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_{N-1}
\end{bmatrix}
\]

- No assumption made on the input/output vector
 - Some assumptions on these leads to related transforms
 - Discrete Hartley Transform (DHT)
 - Discrete Cosine (and Sine) Transform (DCT, DST)
Related transforms: DHT

\[X_k = \sum_{n=0}^{N-1} x_n (\cos(2\pi nk/N) + \sin(2\pi nk/N)) \]

- Proposed as an alternative to DFT
 - Initial (false) claims of improved arithmetic complexity
 - Real-valued FFT complexity is equivalent
- Self-inverse
 - Provided that \(X_0 \) further weighted by \(1/\sqrt{2} \)
 - Inverse real DFT on Hermitian data
 - Same complexity as the real DFT so no significant gain from self-inverse property of DHT
Related transforms: DCT

\[X_k = \sum_{n=0}^{N-1} x_n \cos\left(\frac{2\pi(2k+1)n}{4N}\right). \]

- Lots of applications in image and video processing
- Scale factor of 1/sqrt(2) for \(X_0 \) left out
 - Formula above appears as a sub-problem in length-4N real DFT
 - Multiplicative complexity can be related to real DFT
 \[
 \mu(\text{DCT}(N)) = (\mu(\text{real-DFT}(4N))) - \frac{\mu(\text{real-DFT}(2N))}{2}.
 \]
- Practical algorithms depend on the transform length
 - N odd: Permutations and sign changes map to real DFT
 - N even: Map into same length real DFT + N/2 rotations

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Relationship with FFT

- DHT, DCT, DST and related transforms can all be mapped to DFT

All transforms use split-radix algorithms
 - For minimum number of operations

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].
Implementation issues

- General purpose computers
- Digital signal processors
- Vector/multi processors
- VLSI ASICs
Implementation on general purpose computers

- FFT algorithms built by repetitive use of basic building blocks
 - CTFFT and SRFFT butterflies are small – easily optimizable
 - PFA/WFTA blocks are larger
- More time is spent on load/store operations
 - Than in actual arithmetic (cache miss and memory access latency problem)
 - Locality is of utmost importance
 - This is the reason why PFA and WFTA do not meet the performance expected from their computation complexity!
 - PFA drawback partially compensated since only a few coefficients have to be stored
- Compilers can optimize the FFT code by loop-unrolling (lots of parallelism) and tailoring to cache size (aspect ratio)
Digital Signal Processors

- Built for multiply/accumulate based algorithms
- Not matched by any of the FFT algorithms
 - Sums of products changed to fewer but less regular computations
- Today’s DSPs take into account some FFT requirements
 - Modulo counters (a power of 2 for CTFFT and SRFFT)
 - Bit-reversed addressing
Vector and multi-processors

- Must deal with two interconnected problems
 - The vector size of the data that can be processed at the maximal rate
 - Has to be full as often as possible
 - Loading of the data should be made from data available inside the cache memory to save time

- In multi-processors performance dependent on interconnection network
 - Since FFT deterministic, resource allocation can be solved off-line
 - Arithmetic units specialized for butterfly operations
 - Arrays with attached shuffle networks
 - Pipelines of arithmetic units with intermediate storage and reordering
 - Mostly favor CTFFTs
ASICs

- Area and throughput are important
 - \(A \) – area, \(T \) – time between two successive DFT computations
 - Asymptotic lower bound for \(AT^2 \)
 \[
 \Omega_{AT^2}(\text{DFT}(N)) = N^2 \log^2(N)
 \]
 - Achieved by several micro-architectures
 - Shuffle-exchange networks
 - Square grids
 - Outperform the more traditional micro-architectures only for very large \(N \)
 - Cascade connection with variable delay
- Dedicated chips often based on traditional micro-architectures efficiently mapped to layout
 - Cost dominated by number of multiplies but also by cost of communication
 - Communication cost very hard to estimate
- Dedicated arithmetic units
 - Butterfly unit
 - CORDIC unit
- Still, many heuristics and local tricks to reduce complexity and improve communication
Architectures

- 1, N, N² cell type – direct transform
- Cascade (pipelined) FFT
- FFT network
- Perfect-shuffle FFT
- CCC network FFT
- The Mesh FFT
The naive approach

- Compute all terms in the matrix-vector product
 - N^2 multiplications required
- Three degrees of parallelism
 - Calculate on one multiply-add cell
 - On N multiply-add cells
 - On N^2 multiply-add cells
1 multiply-add cell

- Performance $O(N^2 \log N)$

- For large FFTs storage of intermediate results is a problem
 - N-long FFT requires
 - $N/r \log_r N$, radix-r butterfly operations
 - $2N \log_r N$ read or write RAM accesses
 - E.g. to do the 8K FFT in 1ms, need to access internal RAM every 9ns, using radix-4
 - To speed up
 - Either use higher radix (to reduce the overall number of memory accesses at the price of increase in arithmetic complexity)
 - Or partition the memory to r banks accessed simultaneously (more complex addressing and higher area)

- Need a very high rate clock

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Cascade FFT

- Cascade of logN multiply-add cells
 - Nicely suited for decimation in frequency FFT

- E.g. 8pt DIF FFT

- Produces the output values in bit-reversed order

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].
One of the most obvious implementations

- Provide a multiply-add cell for each execution statement
- Each cell also has a register holding a particular value of \(z^j \) (twiddle factor)
- How many such cells do we need for length-N (radix-2 DIT)?

One possible layout

- \(\log N \) rows, \(N/2 \) cells each row

Pipelined performance \(O(\log N) \)

- A new problem instance can enter the network as soon as the previous one has left the first row
- Delay limited by cell’s multiply-add and long-wire driver to the next row \(O(\log N) \)
 - Total network delay is \(O(\log^2 N) \)
FFT network

- Inputs are in “bit-shuffled” order (decimated)
- Outputs are in “bit-reversed” order
 - Minimizes the amount of interconnects

General scheme for interconnections
- Number the cells naturally
 - 0 to N/2-1, from left to right
- Cell i in the first row is connected to two cells in the second row
 - Cell i and (i+N/4) mod N/2
- Cell i in the second row is connected to cells
 - i and floor(i/(N/4))+(i+N/8) mod N/4) in the third row
- Cell i in the k-th row (k=1,…logN-1) is connected to (k+1)-th row
 - Cell i and cell floor(i/(N/2^k))+(i+N/2^{k+1}) mod N/2^k

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

6.973 Communication System Design 25
The perfect-shuffle network

- N/2 element network perfectly suited for FFT, radix-2 DIT

- Each multiply-add cell associated with \(x_k \) and \(x_{k+1} \) (\(k \)- even number between 0 and N-1)

- A connection from cell with \(x_k \) to cell with \(x_j \) when \(j = 2k \) mod N-1 (this mapping is one-to-one)
 - Represents “circular left shift” of the logN-bit binary representation of \(k \)

- First the \(x_k \) values are loaded into cells

- In each iteration, output values are shuffled among cells

- At the end of logN steps, final data is in cell registers in bit-reversed order

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

6.973 Communication System Design 26
Cube-Connected-Cycles (CCC) network

- N cells capable of performing N-element FFT in O(logN) steps
- Closely related to the FFT network
 - Just has circular connections between first and last rows (and uses N instead of N/2logN cells)
 - Does not exist for all N (only for N=(K/2)*logK for integer K)

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
The Mesh implementation

- Approximately \sqrt{N} rows and columns
- N-long FFT in $\log N$ steps
- View as time-multiplexed version of the FFT network
 - In each step, $N/2$ nodes take the role of $N/2$ cells in FFT network
 - Other half routes the data other nodes
Performance summary

<table>
<thead>
<tr>
<th>Design</th>
<th>Area</th>
<th>Time</th>
<th>Area*Time^2</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-cell DFT</td>
<td>N log N</td>
<td>N^2 log N</td>
<td>N^3 log^3 N</td>
<td>N^2 log N</td>
</tr>
<tr>
<td>N-cell DFT</td>
<td>N log N</td>
<td>N log N</td>
<td>N^3 log^3 N</td>
<td>N^2 log N</td>
</tr>
<tr>
<td>N^2-cell DFT</td>
<td>N^2 log N</td>
<td>log N</td>
<td>N^3 log N</td>
<td>N^2 log N</td>
</tr>
<tr>
<td>1-proc FFT</td>
<td>N log N</td>
<td>N log^2 N</td>
<td>N^3 log^5 N</td>
<td>N log^2 N</td>
</tr>
<tr>
<td>Cascade</td>
<td>N log N</td>
<td>N log N</td>
<td>N^3 log N</td>
<td>N^2 log N</td>
</tr>
<tr>
<td>FFT Network</td>
<td>N log N</td>
<td>log N</td>
<td>N^3 log^2 N</td>
<td>log^2 N</td>
</tr>
<tr>
<td>Perfect Shuffle</td>
<td>N^2 / log^2 N</td>
<td>log^2 N</td>
<td>N^2 log^2 N</td>
<td>log^2 N</td>
</tr>
<tr>
<td>CCC</td>
<td>N^2 / log^2 N</td>
<td>log^2 N</td>
<td>N^2 log^2 N</td>
<td>log^2 N</td>
</tr>
<tr>
<td>Mesh</td>
<td>N log^2 N</td>
<td>\sqrt{N}</td>
<td>N^2 log^2 N</td>
<td>\sqrt{N}</td>
</tr>
</tbody>
</table>

- **Cascade FFT** has the best trade-off
 - Less complicated wiring and NlogN delay
- **FFT network** is as fast as N^2 cell FFT but much less area (only N/2logN cells)
- **Perfect-Shuffle and CCC** use less cells than FFT network, but take a bit more time
Readings

 - Same, but hard to find publication