RF Power Amplifiers

May 7, 2003
Outline

- **PA Introduction**
 - Power transfer characteristics
 - Intrinsic PA metrics
 - Linear and Non-linear amplifiers
 - PA Architectures

- **Single-Stage Linear PA**
 - Load-line theory
 - Transistors size
 - Input and Output Matching
 - So why is this so hard?

- **High-efficiency PAs**
 - Class A, AB, B and C amplifiers
Outline (cont.)

- **Real-World Design Example**
 - Selecting architecture, number of stages
 - Designing stages
 - Tuning: inter-stage match and output

- **System specifications**
 - Ruggedness: load mis-match and VSWR
 - Linearity: spectral mask (ACPR), switching transients
 - Noise in receive band

- **Power Control**
PA Transfer characteristics

Defining linearity:

\[P_{out} = P_{in} + G \]

linear

non-linear (actual)
PA Transfer characteristics

Defining linearity:

\[G = \frac{P_{\text{out}}}{P_{\text{in}}} \]

- \(P_{\text{MAX}} \)
- \(P_{1\text{dB}} \)

Gain (dB)

\(P_{\text{out}} \) (dBm)

\(P_{\text{in}} \) (dBm)
PA Introduction: Intrinsic PA Metrics

- $P_{1\text{dB}}$: Output power at which linear gain has compressed by 1dB (measure of linear power handling)
- P_{MAX}: Maximum output power (saturated power)
- Gain: Generally taken to mean transducer gain

\[
\text{Power delivered to load} \quad \frac{\text{Power available from source}}{\text{Power to load} - \text{Power from source}}
\]

- PAE: Power-added Efficiency

\[
\text{Power to load} - \text{Power from source} \quad \frac{\text{Power from supply}}{\text{Power from supply}}
\]
Linear and Non-linear PAs

- “Linear PA” generally refers to a PA which operates at constant gain, needs to preserve amplitude information.

\[\text{POUT (dBm)} \]
\[\text{PIN (dBm)} \]

- Not necessarily class A (will discuss later …) Peak efficiencies often only 40 to 45 %
- Useful for modulation schemes with amplitude modulation (QPSK, 8-PSK, QAM)
Linear and Non-linear PAs

“Non-linear PA” generally refers to a PA designed to operate with constant P_{IN}, output power varies by changing gain.

- Operation in saturated mode leads to high peak efficiencies > 50%; “backed-off” efficiencies drop quickly.
- Useful for constant-envelope modulation schemes (GMSK).

![Graph showing P_{OUT} vs P_{IN}](image)

Designed to operate here: NOT fixed gain! P_{OUT} adjusted through bias control.
PA Architectures

Typical 2-stage (6.012) design

![Circuit Diagram](image)

- **V_{POS}**
- **I_{REF}**
- **V_{B1}**
- **V_{B2}**
- **50 Ω**

Max power transfer?

“RF IF” logo is visible in the top left corner and “ANALOG DEVICES” logo is visible in the bottom right corner.
PA Architectures

Typical 2-stage RF PA design

- **V_{POS}**
- **RF input**
- **V_{B1}**
- **V_{B2}**
- **Matching network**
- **50 Ω**

Inductive RF choke allows output to rise above V_{POS}, doesn’t dissipate power.

L’s and C’s to transform load impedance.

May require additional RF choke here to isolate input from bias circuit.
PA Architectures

Typical 2-stage RF PA design

Additional caps may be required for matching network, harmonic termination
PA Architectures

Typical 2-stage RF PA design

V_{POS}

RF input

V_{B1}

V_{B2}

matching network

matching network

50 Ω

bond wires (at least …)
PA Architectures

Typical 2-stage RF PA design

Consider this …
PA Architectures

- “Gain stage” is one transistor with passive elements
- “Active” components often limited to 2 or 3 transistors (gain stages) in signal path
- Transistor design very important!
 - Many parallel transistors – often look like mini-circuits themselves
- Passive components just as important as transistors!
 - Circuits must be tunable to account for uncertainties in determining values *a priori* (i.e. simulations stink – especially large-signal, RF simulations)
 - Q and parasitic elements of passives important
Single-Stage Linear PA

- Load-line theory: the maximum power that a given transistor can deliver is determined by the power supply voltage and the maximum current of the transistor

\[
R_{LOAD,\text{opt.}} \approx \frac{2 \cdot V_{POS}}{I_{MAX}}
\]
Single-Stage Linear PA

- Transistor size chosen to deliver required output power

\[P_{OUT} \approx I_{MAX} \cdot V_{POS} / 4 \]
Single-Stage, Linear PA

- Design output match to transform 50Ω load to $R_{L,\text{opt}}$ at transistor output; then design input match for gain (complex conjugate)

```
V_{\text{POS}}
```

- Circuit diagram showing input match and output match with V_{B1} and 50 Ω load.
Seems simple, so why is this so hard?

- Determining I_{MAX} is not so easy
 - For BJT's, one reference suggested that “the best way of estimating its value is to build an optimized class A amplifier and observe the dc supply current.”\(^1\)
 - Somewhat easier for depletion-mode GaAs FETs – I_{MAX} often corresponds to $V_{GS} = 0\text{V}$
 - Values don’t scale linearly with transistor size

- Optimal load resistance only a theoretical number
 - Transmission line effects, parasitic L’s and C’s significant at RF
 - Common practice is to vary the load of an actual transistor to determine the peak output power: the load-pull measurement
 (Noticing a distinct pattern of “empirical” design emerging?)

\(^1\) RF Power Amplifiers for Wireless Communications, Steve Cripps, Artech House, Boston, 1999.
Seems simple, so why is this so hard?

- Now consider the problem for multiple stages ... double the trouble
 - Typical single-stage gain only 10 – 15 dB
 - Inter-stage match now required to match input impedance of 2nd stage to desired output impedance of 1st stage.

- Problems with matching circuits:
 - Large matching ratios \rightarrow high Q circuits for simple L matches
 - Multi-segment matches use valuable real estate, add cost

- Transistor itself matters – a lot!
 - Many parallel transistor
 - Ballasting, balancing and layout extremely important
High-efficiency PAs

- Input signal swing turns on transistor – conduction for only part of sinusoidal period

![Graph showing the relationship between I_D or I_C (mA/mm), V_{DS} or V_{CE} (V), and the quiescent point moving from Class A to Class AB to B.](image-url)
High-Efficiency PAs

Class A:

\[\alpha = 2\pi \]

Class AB:

\[\pi < \alpha < 2\pi \]

Class B:

\[\alpha = \pi \]

Class C: \(\alpha < \pi \)
High-Efficiency PAs

- Assume output match will filter out non-linearities caused by discontinuous conduction:

![Diagram showing input match and output match with 50Ω transformed to R_{L,\text{opt}}. All harmonics filtered out.](image)
High-Efficiency PAs

- If all harmonics filtered out, then voltage output at load is a pure sinusoid, despite discontinuous conduction

![Diagram showing voltage output (V_OUT) and current (I_MAX) over time (ωt)]

- Energy stored in reactive elements delivers current to the load during transistor off-portion of cycle
High-Efficiency PAs

- Now consider peak efficiencies

Calculate fundamental component of current*

\[
I_{dc} = \frac{1}{2\pi} \int_{-\alpha/2}^{\alpha/2} I_Q + I_{pk} \cos(\omega t) \, d\omega t
\]

\[
I_n = \frac{1}{\pi} \int_{-\alpha/2}^{\alpha/2} I_{pk} \cos(\omega t) \cos(n\omega t) \, d\omega t
\]

* There are many texts which cover reduced-conduction angle calculations. See for example *Principles Of Power Electronics*, Kassakian, Schelcth and Verghese, Ch. 3.
High-Efficiency PAs

From phasor plot: \[\cos(\alpha/2) = -\frac{I_Q}{I_{pk}} = -\frac{I_Q}{(I_{MAX} - I_Q)} \]

Put it all together and do the math, you get:

\[I_{dc} = \frac{I_{MAX}}{2\pi} \frac{2\sin(\alpha/2) - \alpha \cos(\alpha/2)}{1 - \cos(\alpha/2)} \]

\[I_{1,0-p} = \frac{I_{MAX}}{2\pi} \frac{\alpha - \sin\alpha}{1 - \cos(\alpha/2)} \]

Assume \(V_{OUT} \) the same for all classes:

\[V_{1,0-p} = V_{POS} \]
High-Efficiency PAs

- Summary of PA “ideal” peak efficiencies

Class A:
\[
\frac{P_I}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{(I_{MAX}/2) \cdot V_{POS}} = 50 \%
\]

Class B:
\[
\frac{P_I}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{(I_{MAX}/\pi) \cdot V_{POS}} = 78 \%
\]

Class C: Ideally can go to 100%, but P_1 drops steadily beyond $\alpha=\pi$, goes to 0 at 100%!
High-Efficiency PAs

- What happened to our load line?
 - For class B fundamental $R_{L,\text{opt}} = \frac{V_{\text{POS}}}{I_{\text{MAX}}/2}$ – Didn’t change

![Diagram showing load lines for Class A and Class B]

Class B is here! V_{DS} or V_{CE} (V)
High-Efficiency PAs

- What happened to our load line?
 - For class B fundamental $R_{L,\text{opt}} = \frac{V_{\text{POS}}}{(I_{\text{MAX}}/2)}$ – Didn’t change

In quasi-static picture, resistance presented to transistor output cut in half. But average resistance is the same for class A.
High-Efficiency PAs

- Now consider “linearity”
 - Clearly the current waveforms are far from linear

BUT ...

- Overall P_{OUT} vs. P_{IN} transfer function can still be quite linear, especially for true Class B where output current waveform is symmetrical with respect to input waveform

Because conduction angle is constant, P_{OUT} changes proportional to P_{IN}
Real-World Design Example

- **IDEAL:** Design each stage independently
 - Determine required gain – number of stages
 - Determine P_{OUT} for each stage
 - Determine $R_{L,\text{opt}}$ for each stage
 - Determine input impedance for each stage
 - Design matching networks for inter-stage, load and input

- **REALITY:**
 - I_{MAX} doesn’t scale nicely with transistor size. Without good I_{MAX} numbers, can’t determine $R_{L,\text{opt}}$. Need to do load-pull.
 - Even load pull measurements have limited accuracy for very large transistors
 - Designs are very empirically driven!
Real-World Design Example

GSM 900 MHz, GaAs HBT PA Design

- \(P_{\text{OUT}} = 33 \text{ dBm} \) (linear) = 2 W
- \(V_{\text{CC}} = 3.5\text{V} \)
- \(R_{\text{LOAD}} = \frac{V_{\text{CC}}^2}{2 \times P_{\text{OUT}}} = 3 \Omega \)
- \(I_{\text{MAX}} = \frac{2 \times V_{\text{CC}}}{R_{\text{LOAD}}} = 2.33 \text{ A} \)
 (Note: expect saturated power to be \(\sim 35 \text{ dBm} \))

- Input power: constant-envelope +5 dBm
- Gain = \(P_{\text{OUT}} - P_{\text{IN}} = 27 \text{ dB} \).
- Expect roughly 10 dB per stage

3 STAGE DESIGN
Real-World Design Example

- **Stage 1**: Gain = 10 dB → $P_{\text{OUT}} = 15 \text{ dBm}$
 - $R_{L1} = \frac{V_{CC}^2}{2*P_{\text{OUT}}} = 194 \Omega$
 - $I_{\text{MAX}} = \frac{2*V_{CC}}{R_{\text{LOAD}}} = 36 \text{ mA}$
 - Chose class A: $I_{\text{DC}} = \frac{I_{\text{MAX}}}{2} = 18 \text{ mA}$
 (18 mA insignificant compared to 2.33 A)
- **Stage 2**: Gain = 10 dB → $P_{\text{OUT}} = 25 \text{ dBm}$
 - $R_{L2} = 19.4 \Omega$
 - $I_{\text{MAX}} = 360 \text{ mA}$
 - Still probably class A (maybe AB): $I_{\text{DC}} = \frac{I_{\text{MAX}}}{2} = 180 \text{ mA}$
- **Stage 3**: Gain = 7 dB → $P_{\text{OUT}} = 33 \text{ dBm}$
 - $R_{L2} = 3 \Omega$, $I_{\text{MAX}} = 2.33 \text{ A}$
 - Class B: $I_{\text{DC}} = \frac{I_{\text{MAX}}}{\pi} = 742 \text{ mA}$
A note on “Gain”

- Taking a very simplistic view of common emitter stages:
 - \(g_{m1} = \frac{I_C}{V_{Th}} = \frac{18 \text{ mA}}{0.025 \text{ V}} = 0.696 \text{ S} \)
 - \(g_{m1}R_L = 0.696 \cdot 194 = 135 \rightarrow \text{NOT 10 dB!} \)

BUT ...

- \(r_e1 = \frac{1}{g_{m1}} = 1.44 \Omega \)
- \(r_e2 = \frac{1}{g_{m2}} = 0.144 \Omega \)
- \(r_e3 = \frac{1}{g_{m3}} = 0.035 \Omega \)

1. Remember it’s power gain, not voltage gain. Can lose voltage at input match.
2. It’s pretty tough not to get significant degeneration!
Real-World Design Example

- Efficiency calculations:
 - $I_{DC1} = 18 \text{ mA}$, $I_{DC2} = 180 \text{ mA}$, $I_{DC3} = 742 \text{ mA}$
 - Total DC Current: 940 mA

\[
\frac{P_I}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{I_{DC} \cdot V_{POS}} = 62 \%
\]

- Realistically may get as high as 55%
Real-World Design Example: Load-Pull

- After initial “guesses” at transistor sizes, load-pull to determine actual target load for matching circuits

Load pull: Vary Z_L
Plot contours of constant power

P_{MAX}
$P_{MAX} - 1\text{dB}$
$P_{MAX} - 2\text{dB}$
Real-World Design Example: Load-pull

Notes on load-pulling:
- Most accurate on probe station, but insertion loss of probes prevents it from being useful for large transistors ("Insertion loss" is RF code word for resistance)
- Bonded devices on evaluation board must be carefully de-embedded
- Even using electronic tuners, accuracy is poor for very large transistor (i.e. for loads in the $2 – 5 \, \Omega$ range)
Real-World Design Example: The Circuit

GaAs die

RF input

V_{B1}

V_{B2}

V_{POS}

50 Ω
Real-World Design Example: The Circuit
Real-World Design Example

\[V_{\text{POS}} \]

\[L_{\text{BOND}} + TL \]

\[L_{\text{BOND}} + TL \]

\[L_{\text{BOND}} + L_{\text{VIA}} \]

RF input

\[V_{B1} \]

\[V_{B2} \]

printed inductor

50 Ω

\[L_{\text{parasitic}} + L_{\text{VIA}} \]
Real-World Design Example

V_{POS}

RF input

may need to add feedback for stability

V_{B1}

V_{B2}

V_{B2}

50 Ω
Real-World Design Example: Tuning

- Example of inter-stage match, 1st to 2nd stage

\[R_{L1} = 194 \ \Omega \ (?) \]
\[Z_{IN2} = 30 - j10 \ (?) \]

Both are really just guesses

* Go to Winsmith: test
Real-World Design Example: Tuning

Example of inter-stage match, 2nd to 3rd stage

\[R_{L2} = 19.4 \ \Omega \]
\[Z_{IN3} = 2 - j2 \]

* Go to Winsmith: test2
System Specifications

- **Ruggedness**
 - 50 Ω load is for antenna in free space. Place antenna on a metal plate and can easily get VSWR of 4:1.
 - Typical PA specs are: don’t oscillate at up to 4:1, survive up to 10:1 (!)

\[
\begin{align*}
V_1^- &= \Gamma \cdot V_1^+ \\
V_1^+ &= V_1^- \\
\end{align*}
\]

\[t = t_1\]

\[t = t_2\]
System Specifications

- **Linearity**
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

![raised cosine filter diagram]

- Power Spectral Density (PSD) (dBm/Hz)
- freq. $f_c - \Delta f$, f_c, $f_c + \Delta f$
- ch. A, B, C
System Specifications

- **Linearity**
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

![Diagram](image)

- **Power Spectral Density (PSD)** (dBm/Hz)
- **3rd order distortion**

- Channels: A, B, C

- Frequency: f_c, $f_c - \Delta f$, $f_c + \Delta f$
System Specifications

- **Linearity**
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

![Diagram showing Power Spectral Density (PSD) with channels A, B, and C, illustrating 3rd and 5th order distortion regions. The diagram includes frequency axes labeled $f_c - \Delta f$, f_c, and $f_c + \Delta f$.](image)
System Specifications

◆ Linearity
 ● For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

$$\text{ACPR} = \frac{\text{Pwr. Ch. B}}{\text{Pwr. Ch. A}}$$
System Specifications

- **Linearity**
 - For non-linear PA in TDMA systems, harmonic spurs and switching transients are most common measure of linearity

![Diagram showing signal ramping profile and 577μs GSM burst. Signal ramping profile must fall within time mask.](image)
System Specifications

- Noise in receive band:
 - Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)
System Specifications

- Noise in receive band:
 - Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)
 - Not so obvious spec in TDD system. Problem primarily of mixing by the PA ($2\omega_2 - \omega_1$ or $\omega_2 - \omega_1$)}
Power Control

- For linear PA, expected to operate at constant gain. Power control is therefore a function of P_{IN}.
- Role of bias circuitry is to maintain constant gain over P_{IN}, temperature (PTAT?).

![Power transistor diagram]
Power Control

For non-linear PA, expected to operate at constant P_{IN}. Power control is achieved by varying gain.

External control signal V_{APC}

On-chip bias circuitry

Power transistor