Lecture 19 Colon Cancer

[This lecture begins with slide 28.]

Retinoblastoma is a good case to start with, since there is only one RB1 gene (on chromosome 13).
- Mapping RB1 – esterase D polymorphism was close to RB1, so they mapped together
- RB1 spans 27 exons, with more than 100 known mutations
- Encodes Rb protein (pRb), which is involved in cell cycle regulation; interacts with E2F family which interacts with cyclins and cdk’s, ultimately controlling the cell cycle
- Common genetic lesion in sporadic retinoblastomas
- Loss of RB1 activity is not the only genetic change in retinoblastoma – numerous other chromosomal abnormalities are present
- Some mutations in the gene cause retinoblastoma with low penetrance

Wilms Tumor
- childhood kidney cancer arising from embryonic cells
- affects 1/10,000
- heritable (~5-7%) and nonheritable (>90%) forms
- multiple genes involved
- true familial tumors rarely observed (~1%)
- 5% also have bilateral aniridia
 - when aniridia and Wilms tumor occur together, they’re commonly accompanied by mental retardation and genitourinary abnormalities
 - WAGR deletion syndrome: Wilms, Aniridia, Genitourinary defects, Retardation; deletion in chromosome 11p13
 - WT1 gene on 11p13; tumor suppressor gene; point mutations and deletions result in Wilms tumor or genitourinary defects. Mutations observed in <10% of Wilms cases.

Denys-Drash syndrome
- all new mutations; rare syndrome
- glomerular neuropathy
- severe urogenital malformations
- multiple Wilms tumors and gonadoblastoma
- dominant negative mutations in WT1

Li-Fraumeni Syndrome
- current definition is complex
- typically describes someone with sarcoma, breast, brain or adrenocorticoïd tumors before age 36, with at least one first or second degree relative with a similar tumor spectrum with early onset
- typically mutations in p53
Hepatitis B: people with chronic HepB are at increased risk for hepatocellular carcinoma

Melanoma: Risk Factors:
- Caucasian
- Exposure to UV radiation
- Presence of multiple or dysplastic nevi*
- Family history of ““
- Freckling and/or history of nonmelanoma skin cancer
- Rare hereditary syndromes: albinism, Li-Fraumeni, xeroderma pigmentosa

* dysplastic nevi: discolored skin patches:
 - flat throughout or with a flat component
 - diameter > 5 mm
 - asymmetric shape
 - indistinct borders
 - variable pigmentation

Familial Melanoma:
- 2 or more 1st-degree relatives with invasive melanoma
- In high-sun areas (where melanoma is more common), consider only families with 3 or more cases

p16 and pRB function in the same biological pathway
- p16 inhibits the complex that phosphorylates a retinoblastoma protein, which would otherwise then pass the G1 cell cycle checkpoint
- pRB acts later in the chain, upon the oncogene complex

MEN 2A mutations occur at cysteine residues to cause medullary thyroid carcinoma (MTC), especially in hereditary MTC

Colorectal Cancer
Guest Lecture

Some lessons we’ve learned from hereditary colon cancer have been very important in understanding cancer and hereditary cancers in general.

Polyp to Cancer Sequence:
- aberrant crypt focus – one tiny abnormality begins developing into a more discrete form, the tubular adenoma
- need to acquire a certain number of hits in tumor suppressor and DNA repair genes in order to allow the progression to continue

Colon Cancer Genetics
- as many as 90 mutated genes per tumor
- ~11 are essential for the cancer to develop
- The *order* in which mutations occur is key
- 3 main classes of genes involved: 1) tumor suppressor genes, 2) oncogenes, 3) DNA repair genes

FAP: familial adenoma polyposis: mucosa of the colon is carpeted with benign polyps; occurs relatively early in life. Untreated, it will progress to colon cancer (100% rate, in untreated patients; at least one of those polyps will develop all the necessary mutations to develop into cancer).
- only the rate of polyp formation is accelerated in FAP, not the rate of transformation from polyp to cancer.

APC tumor suppressor gene
- regulates Wnt signaling pathway
- controls apoptosis
- chromosomal segregation; cells with aberrant APC genes exhibit chromosomal instability, tetraploidy and aneuploidy
- somatic mutations are identified in over 70% of all colon polyps/cancers

Wnt signaling pathway
- Wnt signal binds to FRZ receptor
- Complex formed out of Axin, Beta-cat, APC, and GSK-3Beta. APC regulates Beta-cat levels; mutant APC causes the complex to not form correctly; excess B-cat accumulates and migrates to nucleus, and activates complexes there that shouldn’t always be activated

10-20% have B-cat mutations

Germline mutations cause mutations in every cell of the body, but you don’t develop tumors out of every cell in the body. You need a second, somatic mutation in some cells to cause tumors to grow.

Having a mutation at the far 5’ end of the APC gene causes a less severe phenotype due to the rest of the gene remaining intact and inframe, and somehow this “mostly complete” version of the gene and protein allows for a less severe, later-onset series of polyps (which do develop into cancer).

Ras Gene Family
- 3 members: H-Ras, K-Ras, N-Ras
- Each encodes a 21 kD protein, p21
- K-Ras most important
- Mutations cause GTPase to be always on, constantly activating a signaling pathway

COX genes

p53: induced by cellular stress to regulate apoptosis (present in ~50% colon cancers)
Finally: chromosome 18q allelic deletions (present in ~70% of CRC)

These mutations should happen in this order; the order matters:
1) APC/B-cat; 2) COX2; 3) K-Ras; 4) p53; 5) 18q LOH
(This is true in about 85% of cancers.)

Why does order matter?
- avoid cellular repair mechanisms
- Mouse models that try the mutations out of order don’t tend to develop cancer.

This process, which takes the condition from “normal” to “carcinoma,” takes 7-10 years.

MYH normal function:
- oxidized guanine pairs better with A than with C; normal MYH recognizes the oxidation and repairs it
- mutated MYH can’t do this
- classically autosomal recessive inheritance pattern with respect to causing CRC
- APC gene is particularly susceptible to these kinds of oxidized-G mutations…
 - Why APC is so easily mutated is still an open question.

MYH polyp syndrome
- 15-100 colonic adenomas
- Average age of onset/diagnosis: 50 years
- Clinically resembles AFAP w/o family history
- Cancer risk for homozygotes is 100%; risk for heterozygotes is close to general population

Hereditary Nonpolyposis colorectal cancer (HNPCC) syndrome
- autosomal dominant
- CRC: early age of onset; multiple primary tumors; right-sided predominance
- Few adenomas; rapid progression from polyps to cancer
- 5 genes associated, all are DNA mismatch repair genes