Survival Analysis

Decision Systems Group
Brigham and Women’s Hospital

Harvard-MIT Division of Health Sciences and Technology
HST.951J: Medical Decision Support
Outline

Basic concepts & distributions
 – Survival, hazard
 – Parametric models
 – Non-parametric models

Simple models
 – Life-table
 – Product-limit

Multivariate models
 – Cox proportional hazard
 – Neural nets
What we are trying to do

- Predict survival (or probability of survival)
- and evaluate performance on new cases
- and determine which variables are important

Using these cases:

<table>
<thead>
<tr>
<th>Variable 1</th>
<th>Variable 2</th>
<th>days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.2</td>
<td>8</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>-0.9</td>
<td>3</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.7</td>
<td>4</td>
</tr>
</tbody>
</table>
Survival function

Probability that an individual survives at least t

- $S(t) = P(T > t)$
- By definition, $S(0) = 1$ and $S(\infty) = 0$
- Estimated by ($\#$ survivors at t / total patients)
Unconditional failure rate

- Probability density function (of death)
 \[f(t) = \lim_{\Delta t \to 0} \frac{P(\text{individual dies (t, t+\Delta t)})}{\Delta t} \]
 - \(f(t) \) always non-negative
 - Area below density is 1
 - Estimated by
 \[
 \text{# patients dying in the interval}/(\text{total patients} \times \text{interval width})
 \]
 Same as \# patients dying per unit interval/total
Some other definitions

• Just like \(S(t) \) is “cumulative” survival, \(F(t) \) is cumulative death probability
• \(S(t) = 1 – F(t) \)
• \(f(t) = -S'(t) \)
Conditional failure rate

- AKA Hazard function
- \(h(t) = \lim_{\Delta t \to 0} \frac{P(\text{individual aged } t \text{ dies } (t, t+\Delta t))}{\Delta t} \)
- \(h(t) \) is instantaneous failure rate
- Estimated by
 - \# patients dying in the interval/(survivors at t * interval_width)
 - So can be estimated by
 - \# patients dying per unit interval/survivors at t
 - \(h(t) = \frac{f(t)}{S(t)} \)
 - \(h(t) = -\frac{S'(t)}{S(t)} = -\frac{d \log S(t)}{dt} \)
Parametric estimation

Example: Exponential

- \(f(t) = \lambda e^{-\lambda t} \)
- \(S(t) = e^{-\lambda t} \)
- \(h(t) = \lambda \)
Weibull distribution

- Generalization of the exponential
- For $\lambda, \gamma > 0$
- $f(t) = \gamma \lambda (\lambda t)^{\gamma-1} e^{-\lambda t^\gamma}$
- $S(t) = e^{-\lambda t^\gamma}$
- $h(t) = \gamma \lambda (\lambda t)^{\gamma-1}$

\[
\begin{align*}
\gamma = 2 & \quad \text{for } \gamma = 2 \\
\gamma = 1 & \quad \text{for } \gamma = 1
\end{align*}
\]
Non-Parametric estimation

Product-Limit (Kaplan-Meier)

\[S(t_i) = \prod \left(n_j - d_j \right)/ n_j \]

- \(d_j \) is the number of deaths in interval \(j \)
- \(n_j \) is the number of individuals at risk

Product is from time interval 1 to \(j \)

One interval per death time
Kaplan-Meier

- Example
- Deaths: 10, 37, 40, 80, 91, 143, 164, 188, 188, 190, 192, 206, …
Life-Tables

• AKA actuarial method
 \[S(t_i) = \prod (n_j - d_j) / n_j \]
 \(d_j\) is the number of deaths in interval \(j\)
 \(n_j\) is the number of individuals at risk
 Product is from time interval 1 to \(j\)

• Pre-defined intervals \(j\) are independent of death times

Kaplan-Meier

S(t)

1

2

2

S(t)

1

2

3
Life-Table

hazard

survival

density
Simple models
Multiple strata
Multivariate models

• Several strata, each defined by a set of variable values
• Could potentially go as far as “one stratum per case”?
• Can it do prediction for individuals?
Cox Proportional Hazards

- Regression model
- Can give estimate of hazard for a particular individual relative to baseline hazard at a particular point in time
- Baseline hazard can be estimated by, for example, by using survival from the Kaplan-Meier method
Proportional Hazards

\[\lambda_i = \lambda e^{-\beta x_i} \]

where \(\lambda \) is baseline hazard and \(x_i \) is covariate for patient

Cox proportional hazards

\[h_i(t) = h_0(t) e^{\beta x_i} \]

• Survival

\[S_i(t) = [S_0(t)]^{e^{\beta x_i}} \]
Cox Proportional Hazards

\[h_i(t) = h_0(t) e^{\beta x_i} \]

- New likelihood function is how we estimate \(\beta \)
- From the set of individuals at risk at time \(j \) \((R_j)\), the probability of picking exactly the one who died is

\[
\frac{h_0(t) e^{\beta x_i}}{\sum_m h_0(t) e^{\beta x_m}}
\]

- Then likelihood function to maximize to all \(j \) is
- \(L(\beta) = \prod (e^{\beta x_i} / \sum_m e^{\beta x_m}) \)
Important details

- Survival curves can’t cross if hazards are proportional
- There is a common baseline h_0, but we don’t need to know it to estimate the coefficients
- We don’t need to know the shape of hazard function
- Cox model is commonly used to interpret importance of covariates (amenable to variable selection methods)
- It is the most popular multivariate model for survival
- Testing the proportionality assumption is difficult and hardly ever done
Estimating survival for a patient using the Cox model

• Need to estimate the baseline
• Can use parametric or non-parametric model to estimate the baseline
• Can then create a continuous “survival curve estimate” for a patient
• Baseline survival can be, for example:
 – the survival for a case in which all covariates are set to their means
 – Kaplan-Meier estimate for all cases
What if the proportionality assumption is not OK?

- Survival curves may cross
- Other multivariate models can be built
- Survival at certain time points are modeled and combined
Single-point models

- Logistic regression
- Neural nets

Diagram:
- age
- gender
- blood pressure
- cholesterol
- smoking
- weight
- CHD in t_a
Problems

- Dependency between intervals is not modeled (no links between networks)
- Nonmonotonic curves may appear
- How to evaluate?

![Diagram showing survival percentage over years with patient data and survival probabilities at each year point.](attachment:diagram.png)
Accounting for dependencies

• “Link” networks in some way to account for dependencies.
Summary

• Kaplan-Meier for simple descriptive analysis
• Cox Proportional for multivariate prediction if survival curves don’t cross
• Other methods for multivariate survival exist: logistic regression, neural nets, CART, etc.