HST.720 | Fall 2004 | Graduate

Physiology of the Ear

Readings

JG: Professor John Guinan, Jr.  
JR: Professor John Rosowski  
CS: Professor Christopher Shera

SES # TOPICS LECTURERS READINGS
1 Course Organization and Introduction    
2

Middle Ear Lecture

Middle Ear Papers

JR

Rosowski, J. J., L. H. Carney, T. J. Lynch, and W. T. Peake. “The Effectiveness of the External and Middle Ears in Coupling Acoustic Power into the Cochlea.” In Peripheral Auditory Mechanisms. Edited by J. B. Allen, J. L. Hall, A. Hubbard, S. I. Neely, and A. Tubis. New York: Springer-Verlag, 1986, pp. 3-12.

Ruggero, M. A., and A. N. Temchin. “The Roles of the External, Middle and Inner Ears in Determining the Bandwidth of Hearing.” PNAS 99 (2002): 13206-13210.

3 Middle Ear Papers JR

Wiener, F. M., R. R. Pfeiffer, and A. S. N. Backus. “On the Sound Pressure Transformation by the Head and Auditory Meatus of the Cat.” Acta Otolaryngol 61 (1965): 255-269.

Moller, A. R. “An Experimental Study of the Acoustic Impedance of the Middle Ear and its Transmission Properties.” Acta Otolaryngol 60 (1965): 129-149.

4 Middle Ear Papers JR

Peake, W. T., J. J. Rosowski, and T. J. Lynch III. “Middle-Ear Transmission: Acoustic vs. Ossicular Coupling in Cat and Human.” Hear. Res. 57 (1992): 245-268.

Merchant, S. N., J. J., Rosowski. “Auditory Physiology (Middle-Ear Mechanics).” In Surgery of the Ear. 5th ed. Edited by A. J. Gulya and M. E. Glasscock III. Hamilton, Ontario, BC Decker: 2002, pp. 59-82.

5

Middle Ear Papers

Cochlear Mechanics Lecture

Cochlear Mechanics Papers

JR, JG

Zwislocki, J. “Analysis of the Middle-Ear Function. Part I: Input Impedance.” J. Acoust. Soc. Am. 34 (1962): 1514-1523.

Patuzzi. Overview Lecture. Readings: 3.2 to 3.14, 1996.

Patuzzi, R. “Cochlear Micromechanics and Macromechanics.” In The Cochlea. Edited by P. J. Dallos, A. N. Popper, and R. R. Fay. New York: Springer-Verlag, 1996, pp. 186-257.

Hubbard. Overview Lecture. Readings: 4.1, 1996.

Hubbard, A., and D. C. Mountain. “Analysis and Synthesis of Cochlear Mechanical Function Using Models.” In Auditory Computation. Edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay. New York: Springer, 1996, pp. 62-120.

6 Cochlear Mechanics JG

Ruggero, M. A., N. C. Rich, A. Recio, S. S. Narayan, and L. Robles. “Basilar-Membrane Responses to Tones at the Base of the Chinchilla Cochlea”. J. Acoust. Soc. Am. 101 (1997): 2151-2163.

Zinn, C., H. Maier, H. Zenner, and A. W. Gummer. “Evidence for Active, Nonlinear, Negative Feedback in the Vibration Response of the Apical Region of the In-Vivo Guinea-Pig Cochlea.” Hear. Res. 142 (2000): 159-183.

7 Cochlear Mechanics JG

Zweig, G. “Basilar Membrane Motion.” In Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory, 1976, pp. 619-633.

de Boer, E., and A. L. Nuttall. “The ‘Inverse Problem’ Solved for a Three-Dimensional Model of the Cochlea. III. Brushing-up the Solution Method.” J. Acoust. Soc. Am. 105, no. 6 (1999): 3410-20.

8 Cochlear Mechanics JG

Cooper, N. P. “Radial Variation in the Vibrations of the Cochlear Partition.” In Recent Developments in Auditory Mechanics. Edited by H. Wada, et al. Singapore, NJ: World Scientific, 1999.

Nuttall, A. L., M. Guo, and T. Ren. “The Radial Pattern of Basilar Membrane Motion Evoked by Electric Stimulation of the Cochlea.” Hear. Res. 131 (1999): 39-46.

Richter, C. P., and P. Dallos, “Micromechanics in the Gerbil Hemicochlea.” In The Biophysics of the Cochlea: Molecules to Models. Edited by A. W. Gummer, et al. World Scientific, Singapore, 2003, pp. 278-284.

9 Motility From Hair Cell Stereocilia JG

Howard, J., and A. J. Hudspeth. “Compliance of the Hair Bundle Associated with Gating of Mechanoelectrical Transduction Channels in the Bullfrog’s Saccular Hair Cell.” Neuron 1 (1988): 189-99.

Martin, P., and A. J. Hudspeth. “Active Hair-Bundle Movements can Amplify a Hair Cell’s Response to Oscillatory Mechanical Stimuli.” Proc Natl Acad Sci U S A 96 (1999): 14306-11.

10 Cochlear Mechanics JG, CS

Shera, C. A. “Intensity-Invariance of Fine Time Structure in Basilar-Membrane Click Responses: Implications for Cochlear Mechanics.” J. Acoust. Soc. Am. 110, (2001b): 332-48.

Lin, T., and J. J. Guinan, Jr. “Auditory-Nerve-Fiber Responses to High-Level Clicks: Interference Patterns Indicate that Excitation is Due to the Combination of Multiple Drives.” J. Acoust. Soc. Am. 107 (2000): 2615-30.

11

Cochlear Mechanics

Lecture: Hair Cells and Cochlear

Amplification,  Otoacoustic Emissions

JG

Karavitaki, K. D., and D. C. Mountain. (in prep). “Fluid Flow in the Tunnel of Corti Provides Longitudinal Coupling which May be Critical for Cochlear Amplification.”

Guinan, J. J., Jr., T. Lin, and H. Cheng. (in prep). “Medial-Olivocochlear-Efferent Inhibition of the First Peak of Auditory-Nerve Responses: Evidence for Cochlear Motion Separate From the Classic Basilar-Membrane Traveling Wave.”

12 Spontaneous Oscillations JG, CS

Martin, P., A. J. Hudspeth, and F. Julicher. “Comparison of a Hair Bundle’s Spontaneous Oscillations with its Response to Mechanical Stimulation Reveals the Underlying Active Process.” Proc Natl Acad Sci U S A 98 (2001): 14380-5.

Shera, C. A. “Mammalian Spontaneous Otoacoustic Emissions are Amplitude-Stabilized Cochlear Standing Waves.” J. Acoust. Soc. Am. 114 (2003): 244-62.

13 Outer Hair Cell Somatic Motility JG

Liberman, M. C., J. Gao, D. Z. He, X. Wu, S. Jia, and J. Zuo. “Prestin is Required for Electromotility of the Outer Hair Cell and for the Cochlear Amplifier.” Nature 28 (Aug 2002).

He, D. Z., and P. Dallos. “Somatic Stiffness of Cochlear Outer Hair Cells is Voltage-Dependent.” Proc Natl Acad Sci U S A 96 (1999): 8223-8228.

14 Control of OHC Motility JG

Santos-Sacchi, J., and J. P. Dilger. “Whole Cell Currents and Mechanical Responses of Isolated Outer Hair Cells.” Hear. Res. 35 (1988): 143-150.

Dallos, P., and B. N. Evans. “High-Frequency Motility of Outer Hair Cells and the Cochlear Amplifier”. Science 267 (1995): 2006-2009.

———. “High-Frequency Outer Hair Cell Motility: Corrections and Addendum.” Science 268 (1995): 1420-1421.

Mountain, D. C., and A. E. Hubbard. “A Piezoelectric Model of Outer Hair Cell Function.” J. Acoust. Soc. Am. 95 (1995): 350-354.

15 Otoacoustic Emissions JG, CS

Zwicker, E., and E. Schloth. “Interrelation of Different Oto-Acoustic Emissions.” J. Acoust. Soc. Am. 75 (1984): 1148-1154.

Shera, C. A., and J. J. Guinan, Jr. “Evoked Otoacoustic Emissions Arise by Two Fundamentally Different Mechanisms: A Taxonomy for Mamalian OAEs.” J. Acoust. Soc. Am. 105 (1999): 782-798.

16 Otoacoustic Emissions JG

Liberman, M. C., J. Zuo, and J. J. Guinan, Jr. “Otoacoustic Emissions Without Somatic Motility: Can Stereocilia Mechanics Drive the Mammalian Cochlea?” J. Acoust. Soc. Am. 116 (2004): 1649-1655.

Manley, G. A., D. L. Kirk,  C. Koppl, and G. K. Yates. “In Vivo Evidence for a Cochlear Amplifier in the Hair-Cell Bundle of Lizards.” Proc Natl Acad Sci U S A 98 (2001): 2826-31.

17 Otoacoustic Emissions JG, CS

Zweig, G., and C. A. Shera. “The Origin of Periodicity in the Spectrum of Evoked Otoacoustic Emissions.” J. Acoust. Soc. Am. 98 (1995): 2018-2047.

Ren, T. “Reverse Propagation of Sound in the Gerbil Cochlea.” Nat Neurosci 7 (2004): 333-4.

18 Student Presentations of Suggested Topics    
19 Student-Selected Topic:  
Modulation of f1-f2 acoustic distortion: Evidence for intracochlear neural system?
 

Kirk, D. L., and B. M. Johnstone. “Modulation of f2-f1: Evidence for a GAGA-ergic efferent system in apical cochlea of the guinea pig.” Hear. Res. 67 (1993): 20-34.

Lowe, M., and D. Robertson. “The behaviour of the f2-f1 acoustic distortion product: Lack of effect of brainstem lesions in anaesthetized guinea pigs.” Hear. Res. 83 (1995): 133-141.

Related Papers

Kujawa S. G., M. Fallon and R. P. Bobbin. “Time varying alteraltions in the f2-f1 DPOAE response to continuous primary stimulation. I. Response characterization and contribution of the olivocochlear efferents.” Hear. Res. 85 (1995): 142-154.

Kujawa S. G., M. Fallon, R. A. Skellett and R. P. Bobbin. “Time-varying alterations in the f2-f1 DPOAE response to continuous primary stimulation. II. Influence of local calcium-dependent mechanisms.” Hear. Res. 97 (1996): 153-164.

20 Student-Selected Topic:  
Changes in cochlear tonotopy during development
 

Mills, D. M., and E. W. Rubel. “Development of the base of the cochlea: place code shift in the gerbil.” Hear. Res. 122 (1998): 82-96.

Overstreet, E. H., A. N. Temchin and M. A. Ruggero. “Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation” J. Physiol. 545, no. 1 (2002): 279-288.

Related Papers 

Rubel, E. W. and B. M. Ryals. “Development of the place principle: acoustic trauma.” Science 219 (1983): 512-513.

Manley, G. A., J. Brix and A. Kaiser. “Developmental stability of the tonotopic organization of the chick’s basilar papilla.” Science 237 (1987): 655-656.

Overstreet, E. H., A. N. Temchin and M. A. Ruggero. “Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation.”  J. Physiol. 545, no. 1 (2002): 279-288.

Background material

Romand, R. “Modification of tonotopic representaion in the auditory system during development.” Prog. Neurobiol. 51 (1997): 1-17.

———. “Development of the Cochlea.” In Development of Auditory and Vestibular Systems. Edited by R. Romand. New York: Academic Press, 1983, pp 47-88.

Edelman, G. M. Chapter 4, “Pattern.” In Topobiology: An Introduction to Molecular Embryology. New York: Basic Books, 1988.

21 Student-Selected Topic:  
Auditory nerve response to speech stimuli in normal and traumatized cochleae
 

Miller, R. L., J. R. Schilling, K. R. Franck and E. D. Young. “Effects of acoustic trauma on the representation of the vowel /å/ in cat auditory nerve fibers.” J. Acoust. Soc. Am. 101, no. 6 (1997): 3602-3616.

Recio, A., W. S. Rhode, M. Kiefte and K. R. Kluender. “Responses to cochlear normalized speech stimuli in the auditory nerve of cat.” J. Acoust. Soc. Am. 111, no. 5 (2002): 2213-2218.

Background material

Miller, R. L., M. C. Calhoun and E. D. Young. “Contrast enhancement improves the representation of /å/-like vowels in the hearing-impaired auditory nerve.” J. Acoust. Soc. Am. 106, no. 5 (1999): 2693-2708.

Sachs, M. B., and E. D. Young. “Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate.” J. Acoust. Soc. Am. 66 (1979): 470-479.

Young, E. D., and M. B. Sachs. “Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers.” J. Acoust. Soc. Am. 66 (1979): 1381-1403.

Miller, R. L., B. M. Calhoun and E. D. Young. “Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma.” J. Acoust. Soc. Am. 105, no. 1 (1999): 311-325.

22 Student-Selected Topic:  
Processing speech and music sounds in the auditory periphery:  Computational models of inner hair cell and auditory nerve fiber responses
 

Sumner, C. J., E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis. “A revised model of the inner-hair cell and auditory-nerve complex.” J. Acoust. Soc. Am. 111 (2002): 2178-2188.

Robert, A., and J. L. Eriksson. “A composite model of the auditory periphery for simulating responses to complex sounds.” J. Acoust. Soc. Am. 106 (1999): 1852-1864.

Background material

Meddis, R., M. Hewitt and T. Shackleton. “Implementation details of a computational model of the inner hair-cell/auditory-auditory nerve synapse.” J. Acoust. Soc. Am. 87 (1990): 1813-1816.

Sumner, C. J., E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis. “Adaptation in a revised inner-hair cell model.” J. Acoust. Soc. Am. 113, no. 2 (2003): 893-901.

———. “A revised model of the inner-hair cell and auditory nerve complex.” J. Acoust. Soc. Am. 111 (2002): 2178-2188.

23 Student-Selected Topic:  
Variability of hearing organ morphology and physiology among animals: Universal similarities/differences
 

Manley, G. A. “Cochlear mechanisms from a phylogenetic viewpoint.” PNAS 97 (2000): 11736-11743.

Eberl, D. F. “Feeling the vibes: chordotonal mechanisms in insect hearing.” Curr. Opin. Neurobiol. 9 (1999): 389-393.

Yager, D. D. “Structure, development, and evolution of insect auditory systems.” Microsc. Res. Tech. 47 (1999): 380-400.

24 Student-Selected Topic:  
Variability of hearing organ morphology and physiology among animals: Universal similarities/differences (cont.)
 

Gleich, O., and G. A. Manley. “The Hearing Organ of Birds and Crococdilia.” In Comparative Hearing: Birds and Reptiles. Edited by R. J. Dooling, R. R. Fay, and A. N. Popper. New York: Springer, 2000.

Ketten, D. R. “Cetacean Ears.” In Hearing by Whales and Dolphins. Edited by W. L. A. Whitlow, A. N. Popper and R. Fay. New York: Springer, 2000.

25 Student-Selected Topic:  
Molecular structures of transduction gating
 

Corey, D. P., et al. “TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells.” Nature 432, no. 7018 (2004): 723-30.

Siemens, J., et al. “Cadherin 23 is a component of the tip link in hair-cell stereocilia.” Nature 428 (2004): 950-955.

Related Reading

Corey, D. P., and M. Sotomayor. “Hearing: tightrope act.” Nature 428 (2004): 901-903.

Sollner, C., et al. “Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.” Nature 428 (2004): 955-959.

Howard, J., and S. Bechstedt. “Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors.” Curr. Biol. 14 (2004): R224-226.

Gong, Z., et al. “Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila.” J. Neurosci. 24 (2004): 9059-9066.

26 Student-Selected Topic:  
Adaptation of mechanoelectrical transduction channels in stereocilia of auditory hair cells
 

Ricci, A. J., A. C. Crawford and R. Fettiplace. “Active Hair Bundle Motion Linked to Fast Transducer Adaptation in Auditory Hair Cells.” J. Neurosci. 20 (2000): 7131-7142.

Kennedy, H. J., M. G. Evans, A. C. Crawford and R. Fettiplace. “Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.” Nat. Neurosci. 6 (2003): 832-836.

Related Reading

Manley, G. A., U. Sienknecht and C. Koppl. “Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink.” J. Neurophysiol. 92 (2004): 2685-2693.

Vilfan, A., and T. Duke. “Two adaptation processes in auditory hair cells together can provide an active amplifier.” Biophys. J. 85 (2003): 191-203.

Martin, P., D. Bozovic, Y. Choe and A. J. Hudspeth. “Spontaneous Oscillation by Hair Bundles of the Bullfrog’s Sacculus.” J. Neurosci. 23 (2003): 4533-4548.

Fettiplace, R., and A. J. Ricci. “Adaptation in auditory hair cells.” Curr. Opin. Neurobiol. 13 (2003): 446-451.

Bozovic, D., and A. J. Hudspeth. “Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog.” PNAS 100 (2003): 958-963.

Holt, J. R., et al. “A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells.” Cell 108 (2002): 371-381.

Walker, R. G., and A. J. Hudspeth. “Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog’s sacculus.” PNAS 93 (1996): 2203-2207.