(1) P induces a strict partial order on W (strict partial order = transitive, irreflexive, asymmetric relation)
\[w <_P w' \text{ iff } w \text{ satisfies more propositions in } P \text{ than } w' \]
\[w \text{ satisfies } p \text{ iff } p \text{ is true in } w, \text{ i.e. iff } p(w) = 1, \text{ i.e. iff } w \in p \]

(2) \[P = \{p, q, r\} \]
\[w_1 \models p \]
\[w_2 \models q \]
\[w_3 \models r \]
\[w_4 \models p, q \]
\[w_5 \models q, r \]
\[w_6 \models p, q, r \]

(3) \[L = \{p, q\}, \text{ whereby} \]
\[(i) \quad p = \neg \text{PARK} \]
\[(ii) \quad q = \text{PARK} \rightarrow \text{PAY} \]

(4) \[\left[\text{John must pay a fine} \right]^{w_0} = 1 \text{ iff } w \text{ is such that for any } w' \text{ related to } w, \text{ John pays a fine in } w' \]

(5) \[w' \text{ is related to } w \text{ iff} \]
\[(a) \quad \text{John parks in } w' \text{ (i.e. } w' \in f_{\text{park}}(w)) \]
\[(b) \quad \text{no } w'' \text{ in which John parks satisfies more propositions in } L \text{ than } w' \]

(6) \[w' \text{ is related to } w \text{ iff } w' \in \text{MAX}_L \text{(the set of worlds compatible with the facts in } w) \]
\[\text{MAX}_L(W) = \{w \in W | \neg \exists w' \in W: w' <_L w\} \]

(7) \[\left[\text{must} \right]^{w_0}(f)(g)(p) = 1 \text{ iff } \forall w' \in \text{MAX}_{g(w)}(f(w)): w' \models p \]