MIT 3.071
Amorphous Materials
8: Mechanical Properties

Juejun (JJ) Hu
After-class reading list

- Fundamentals of Inorganic Glasses
 - Ch. 18
- Introduction to Glass Science and Technology
 - Ch. 9
Glass = fragile?

<table>
<thead>
<tr>
<th>Material</th>
<th>Iron</th>
<th>Structural steel</th>
<th>Glass fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength</td>
<td>35 MPa</td>
<td>550 MPa</td>
<td>4890 MPa</td>
</tr>
</tbody>
</table>

- Iron man
- Glass
Strength and toughness

- Strength: applied stress a material can withstand
- Toughness: energy absorbed by (work performed to) a material per unit volume before fracture
Theoretical strength of a brittle material

- Theoretical strength is determined by the cohesive force between atoms.
- Work W performed to separate the solid equals to the energy of the fresh surfaces created during fracture.

\[\sigma = E \varepsilon \]
Theoretical strength of a brittle material

- Theoretical strength is determined by the cohesive force between atoms
- Work W performed to separate the solid equals to the energy of the fresh surfaces created during fracture

$$\sigma = \sigma_m \sin \frac{\pi \varepsilon}{\lambda}$$

When $\sigma \ll \sigma_m$, $\sigma = E \varepsilon$

$$\sigma_m = \frac{\lambda E}{\pi}$$

Work W performed:

$$W = V \cdot \int_0^\lambda \sigma d\varepsilon = \frac{2 \lambda^2 E V}{\pi^2} = 2 \gamma S$$

$$V = a_0 S \Rightarrow \lambda = \pi \sqrt{\gamma / E a_0}$$

$$\Rightarrow \sigma_m = \sqrt{\frac{\gamma E}{a_0}}$$
Theoretical strength of a brittle material

Consider silica glass

- $\gamma = 3.5 \text{ J/m}^2$, $E = 70 \text{ GPa}$, $a_0 = 0.2 \text{ nm}$

$$\sigma_m = \sqrt{\frac{\gamma E}{a_0}} = 35,000 \text{ MPa}$$

<table>
<thead>
<tr>
<th>Material</th>
<th>Glass</th>
<th>Silica glass</th>
<th>Silica nanowire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength</td>
<td>~ 30 MPa</td>
<td>110 MPa</td>
<td>26000 MPa†</td>
</tr>
</tbody>
</table>

Practical strength of engineering materials is much less than their theoretical strength

Griffith’s theory

- Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)
Griffith’s theory

- Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)

Stress concentration factor:

\[\frac{\sigma_{\text{max}}}{\sigma_\infty} = 2\sqrt{\frac{a}{\rho}} = 2\sqrt{\frac{a}{a_0}} \]

Fracture strength of a flawed material:

\[\sigma_f = \frac{1}{2} \sqrt{\frac{\gamma E}{a}} \]
Griffith’s theory

- Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)

In flawed silica glass:

\[\sigma_f = \frac{1}{2} \sqrt{\frac{\gamma E}{a}} = 110 \text{ MPa} \]

\[\Rightarrow a = 5 \text{ } \mu\text{m} \]

Visualizing Griffith cracks in glass

Displacement field near a crack tip

Figure © John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Stress intensity factor and fracture toughness

- Stress intensity factor (tensile):
 \[K_I = \sigma_\infty \sqrt{\pi a} \quad K_{Ic} = \sigma_f \sqrt{\pi a} \]
 critical stress intensity factor

- Strain energy release rate:
 \[G_I = \frac{K_I^2}{E} \quad G_{Ic} = \frac{K_{Ic}^2}{E} \]
 work of fracture

- Fracture condition:
 \[K_I > K_{Ic} \quad G_I > G_{Ic} \]

\[K_{Ic} \] is a material constant and is independent of crack length
Intrinsic plasticity in amorphous metals

- Lack of global plasticity
- Intrinsic plasticity
- When $G/K < 0.42$: plastic; $G/K > 0.42$: brittle (K: bulk modulus)

Brittle fracture of glass

- When a crack exceeds the critical length, the crack becomes unstable and propagates catastrophically through the material.

Crack propagation velocity:

1540 m/s

Glass cracking at 231,000 fps
Fractography

Conchoidal fracture

Image from "Fracture analysis, a basic tool to solve breakage issues"
Static fatigue in glass

- Under constant load, the time-to-failure varies inversely with the load applied.

Sub-critical crack growth: crack length increases over time even when $\sigma_\infty < \sigma_f$.
Stress corrosion

- Reaction at crack tip:
 \[-\text{Si-O-Si}^- + \text{H}_2\text{O} \rightarrow \text{Si-OH} + \text{HO-Si}^-\]

- Higher alkaline content generally reduces fatigue resistance

- Higher susceptibility to stress corrosion in basic solutions

- Thermally activated process

Fracture toughness measurement

- Standard specimen geometries to obtain load-displacement plot

![Compact tension specimen](image1.png)

![Single edge-notched bend specimen](image2.png)

![Middle-cracked tension specimen](image3.png)

Indentation of glass samples

- Mechanical properties evaluated through indented crack size or crack-opening displacement based on empirical equations
- Poor correlation with conventional test results can be a concern

Indentation of glass samples

- Vickers indentation of soda-lime glass

Fracture statistics

- Experimental results of fracture strength can often be described by the Weibull distribution.
- The fraction F of samples which fracture at stresses below σ is given by:
 \[
 F = 1 - \exp\left[-\left(\frac{\sigma}{\sigma_0}\right)^m\right]
 \]
 m: Weibull modulus
- Probability density $dF/d\sigma$
 - Probability of samples fracture at stress σ
Weibull plot

\[F = 1 - \exp \left[-\left(\frac{\sigma}{\sigma_0} \right)^m \right] \]
\[\Rightarrow \ln \left[-\ln (1 - F) \right] = m \left(\ln \sigma - \ln \sigma_0 \right) \]

\[m \text{ : slope of the Weibull plot} \]
\[\sigma_0 \text{ : intercept with horizontal axis} \]

Summary

- Theoretical and practical strengths of materials
 - Practical strength of brittle materials is usually much lower than the theoretical strength due to the presence of defects
 - Oxide glasses are extremely sensitive to surface defects
 - Intrinsic ductility in select BMGs contributes to high toughness

- Basics of fracture mechanics
 - Griffith crack theory
 - Fracture toughness \(K_{lc} = \sigma_f \sqrt{\pi a} = \frac{1}{2} \sqrt{\pi \gamma E} \)

- Fatigue and stress corrosion
- Fracture toughness measurement
- Fracture statistics: Weibull plot