3.23 Electrical, Optical, and Magnetic Properties of Materials
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
ANHARMONICITY

Galloping Gertie (Tacoma Narrows Bridge, the old one...)

Image from Wikimedia Commons, http://commons.wikimedia.org/wiki/Main_Page.
Last time

1. Chemical potential as a function of T: intrinsic and extrinsic case
2. Population of impurity levels
3. Equilibrium carrier densities in impure semiconductors, and simplified expressions
4. p-n junction: depletion layer/space charge, built-in voltage, operation under bias and rectification
Study

- Singleton, most appropriately, scattered around.
Carrier concentration in a p-n junction

Image removed due to copyright restrictions.
What is the built-in voltage V_{bi}?

\[qV_{bi} = \mu_n - \mu_p \]

\[\mu_p = \mu_i - k_b T \ln \left(\frac{N_a}{n_i} \right) \quad \mu_n = \mu_i + k_b T \ln \left(\frac{N_D}{n_i} \right) \]

\[\therefore V_{bi} = \frac{k_b T}{q} \ln \left(\frac{N_a N_d}{n_i^2} \right) \]
Qualitative Effect of Bias

- Forward bias (+ to p, - to n) decreases depletion region, increases diffusion current exponentially
- Reverse bias (- to p, + to n) increases depletion region, and no current flows ideally

Forward Bias

Reverse Bias

Solve minority carrier diffusion equations on each side and determine J at depletion edge

\[
J = q \left(\frac{D_e n_i^2}{L_e N_a} + \frac{D_h n_i^2}{L_h N_d} \right) \left(\frac{qV_a}{k_B T} - 1 \right) = J_o \left(\frac{qV_a}{k_B T} - 1 \right)
\]

\[
\frac{D_i}{\mu_i} = \frac{k_B T}{q}, \quad L_i = \sqrt{D_i \tau_i}
\]
Rectification

Semiconductor solar cells

Bipolar Junction Transistor

Field-effect Transistor

Bloch oscillations

Conductivity in semiconductors

\[j = -n e v \]
\[v = -\frac{eE\tau}{m} \]
\[j = \frac{ne^2\tau}{m} E \]

\[\sigma = n_e e \frac{e\tau_e}{m_e} + n_h e \frac{e\tau_h}{m_h} \]

\[\mu_e = \frac{e\tau_e}{m_e} \]
\[\mu_h = \frac{e\tau_h}{m_e} \]

Ohmic to ballistic conductance

What happens when electric field is applied?

- If we reduce the length conductance grows indefinitely!
- Experiment shows limiting value G_c.
- This resistance comes from contacts

Image removed due to copyright restrictions. Please see Fig. 1.7.2 in Datta, Supriyo. *Electronic Transport in Mesoscopic Systems*. New York, NY: Cambridge University Press, 1995.
Electron transport at the nanoscale

- Short length \Rightarrow Few scattering events \Rightarrow Phase coherency
- Wave character becomes important

Multi-walled carbon nanotubes

Images removed due to copyright restrictions. Please see: Fig. 1 and 2 in Frank, Stefan, et al. "Carbon Nanotube Quantum Resistors." Science 280 (June 1998): 1744-1746.

- $\sim_{\mu}m$, room temperature
- 50 % of the theoretical value
- Very high current density \Rightarrow non-dissipative transport

S. Franks et al., Science 280, 1744 (1998)
Electron transport at the nanoscale

Quantum conductance of an ideal ballistic conductor

No scattering, length-independent!

\[N_{\text{ch}} = 3 \]

\[I^+ = \frac{e}{L} \sum_k v f^+(E) = \frac{e}{L} \sum_k \frac{\partial E}{\partial k} f^+(E) = \frac{2e}{h} \int_{-\infty}^{+\infty} f^+(E) dE \]

\[I = I^+ - I^- = \frac{2e}{h} \int_{-\infty}^{+\infty} [f^+(E) - f^-(E)] dE = \frac{2e^2}{h} \frac{(\mu_1 - \mu_2)}{e} = \frac{2e^2}{h} V \]

Conductance quantum

\[G = \frac{dI}{dV} = \frac{2e^2}{h} N_{\text{ch}} \]
Conductance from transmission

- Predominant “wave” character

➤ Solve the Schrödinger equation

\[e^{ik_1x} \quad r e^{-ik_1x} \quad t e^{ik_1x} \]

\[\frac{1}{2} k_1^2 = E \quad , \quad \frac{1}{2} k_2^2 = E + V \]

\[\mathcal{T} = t^*t = \left[1 + \frac{1}{4} \frac{V^2}{E(E+V)} \sin^2(k_2W) \right]^{-1} \]
Quantum transport in CNTs

- Temperature / Length / Phonons ...

Images removed due to copyright restrictions.

Please see: Fig. 1a in Kong, Jing, et al. "Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides." *Physical Review Letters* 87 (September 2001): 106801.

- Very short CNT \Rightarrow
 conductance independent of *length* and *temperature*

- Longer CNT \Rightarrow
 conductance decreases as temperature increases
due to the scattering by phonons

- Estimated mean free path of phonon scattering at R.T. $\Rightarrow \sim 1\mu$m
 (we do not take inelastic scattering into account)

Nanotube electrical interconnects

Problem:
Current saturation at high bias and for long nanotubes

Transport not purely ballistic

Nanotube electrical interconnects

High electric field

Hot electrons
(E > 0.16 eV)

Strong el-ph scattering

Hot phonons
(optical phonons)

Heat dissipation bottleneck

Low energy acoustic phonons

τ^{EP} \sim 0.5 \text{ ps}

τ^{PP} \gg τ^{EP}

Courtesy of Nicola Bonini. Used with permission.
Nanotube electrical interconnects

High electric field

Strong el-ph scattering

Hot electrons
(E > 0.16 eV)

$\tau^{EP} \approx 0.5 \text{ ps}$

Heat dissipation bottleneck

Hot phonons
(optical phonons)

Low energy acoustic phonons

$\tau^{PP} \gg \tau^{EP}$

Boltzmann transport equation for electrons and phonons to model nanotubes on substrate [1]

$\tau^{PP} \sim 5 \text{ ps} \gg \tau^{EP} \sim 0.5 \text{ ps}$

(parameter) (ab initio)

Image removed due to copyright restrictions.

The perfectly harmonic crystal

Phonon: lattice vibration of wave-vector \(\mathbf{q} \) and frequency \(\omega_j(\mathbf{q}) \) (\(j \): band index). Frequencies are calculated from the second derivatives of the energy (**interatomic force constants**) versus atomic displacements:

\[
C_{\alpha i, \beta j}(\mathbf{R}_L, \mathbf{R}_{L'}) = \frac{\partial^2 E}{\partial u_{\alpha i, L} \partial u_{\beta j, L'}} \bigg|_{equilibrium} = C_{\alpha i, \beta j}(\mathbf{R}_L - \mathbf{R}_{L'})
\]

Precisely, phonon frequencies are the eigenvalues of the **dynamical matrix** \(\tilde{D}_{\alpha i, \beta j}(\mathbf{q}) \), Fourier transform of \(C_{\alpha i, \beta j}(\mathbf{R}_L) \):

\[
\tilde{D}_{\alpha i, \beta j}(\mathbf{q}) = \sum_L C_{\alpha i, \beta j}(\mathbf{R}_L) e^{-i\mathbf{q}\cdot\mathbf{R}_L}
\]

\[
\omega^2 u_{\alpha i} = \sum_{\beta j} u_{\beta j} \tilde{D}_{\alpha i, \beta j}(\mathbf{q})
\]

Courtesy of Nicolas Mounet. Used with permission.
Phonon dispersions in diamond

Phonon dispersions in graphite

Harmonic crystal’s free energy

Quantization of phonons’ energy:

\[E_j(q) = h \omega_j(q) n + \frac{1}{2} \]

Partition function of one phonon (microcanonical ensemble - T & V constant):

\[Z_{q,j} = \sum_n \exp\left(-\frac{h \omega_j(q)}{k_B T} \left(n + \frac{1}{2}\right)\right) = \frac{1}{2 \sinh \left(\frac{h \omega_j(q)}{k_B T}\right)} \]

Total partition function:

\[Z_{\text{total}} = \prod_{q,j} Z_{q,j} = \frac{1}{\prod_{q,j} 2 \sinh \left(\frac{h \omega_j(q)}{k_B T}\right)} \]

Free energy: (\(\{a_i\}\) = lattice parameters)

\[F(\{a_i\}, T) = E(\{a_i\}) + F_{\text{vib}} \]

\[= E(\{a_i\}) - k_B T \ln Z_{\text{total}} \]

\[= E(\{a_i\}) + \sum_{q,j} \frac{h \omega_{q,j}}{2} + k_B T \sum_{q,j} \ln(1 - \exp(-\frac{h \omega_{q,j}}{k_B T})) \]

Courtesy of Nicolas Mounet. Used with permission.
The quasi-harmonic approximation: principle

\[F(\{a_i\}, T) = E(\{a_i\}) + \sum_{q,j} \frac{\hbar \omega_{q,j}}{2} + k_B T \sum_{q,j} \ln(1 - \exp(-\frac{\hbar \omega_{q,j}}{k_B T})) \]

If phonon frequencies assumed constant (harmonic crystal), no dependence of the vibrational free energy on structure

→ no thermal expansion, no temperature dependence of elastic constants, heat capacity reaching a limit a high temperature, ie. **no anharmonic effects**.

Quasi-harmonic approximation: use harmonic expression of the free energy but add additional dependence of the phonon frequencies on the **lattice parameters** \(\{a_i\} \).

Courtesy of Nicolas Mounet. Used with permission.
Heat capacity

Constant volume heat capacity given by:

\[
C_v = -T \frac{\partial^2 F}{\partial T^2} = \sum_{q,j} c_v(q,j) = k_B \sum_{q,j} \left(\frac{\hbar \omega_{q,j}}{2k_B T} \right) \frac{1}{\sinh^2 \left(\frac{\hbar \omega_{q,j}}{2k_B T} \right)}
\]

Courtesy of Nicolas Mounet. Used with permission.

Figure by MIT OpenCourseWare.

Thermal expansion

Minimization of quasi-harmonic free energy vs. lattice parameters \(\{a_i\} \):

\[
F(\{a_i\}, T) = E(\{a_i\}) + \sum_{\mathbf{q}, j} \frac{\hbar \omega_{\mathbf{q}, j}(\{a_i\})}{2} + k_B T \sum_{\mathbf{q}, j} \ln(1 - \exp(-\frac{\hbar \omega_{\mathbf{q}, j}(\{a_i\})}{k_B T}))
\]

Equilibrium lattice parameters given by that minimization change with temperature → **Thermal expansion** (or contraction):

\[
\alpha_i = \frac{1}{a_i} \frac{\partial a_i}{\partial T}
\]
Grüneisen parameters

General definition:

\[\gamma_k(q, j) = \frac{-a_{0,k}}{\omega_{0,q,j}} \frac{\partial \omega_{q,j}}{\partial a_k} \bigg|_0 \]

So that:

\[\alpha_i = \sum_{q,j} c_v(q, j) \sum_k \frac{S_{ik}}{V_0} \gamma_k(q, j) \]

Grüneisen parameters are usually positive (phonon frequencies decreasing with bonding distance) but low frequency modes can exhibit strongly negative Grüneisen parameters, leading to an overall negative thermal expansion.

One can calculate the frequency derivatives by interpolation of the phonon dispersions vs. lattice parameters.
Thermal Contraction in 2-d and 1-d Carbon

Grüneisen parameters

\[\gamma_k(q, j) = \left. \frac{-a_{0,k}}{\omega_{0,q,j}} \frac{\partial \omega_{q,j}}{\partial a_k} \right|_0 \]
Grüneisen parameters for SWNT

(8,0) SWNT: Grüneisen parameters

“Pinch” mode

TA bending mode

Radial breathing mode

ZA bending mode of graphite

Courtesy of Nicola Bonini. Used with permission.
Phonon linewidth

\[\gamma = \gamma^{EP} + \gamma^{PP} \]

(intrinsic linewidth)

Electron-phonon interactions

- Phonon emission
 - \(k, \varepsilon_k \rightarrow k - q, \varepsilon_k - \hbar \omega \)
 - \(q, \hbar \omega \)
- Phonon absorption
 - \(k, \varepsilon_k \rightarrow k + q, \varepsilon_k + \hbar \omega \)
 - \(q, \hbar \omega \)

Phonon-phonon interactions

- Phonon decay
 - \(q, \omega \rightarrow q', \omega' \)
 - \(q - q' \pm \mathbf{G}, \omega - \omega' \)
- Phonon absorption
 - \(q, \omega \rightarrow q + q' \pm \mathbf{G}, \omega + \omega' \)
 - \(q', \omega' \)
Anharmonic decay channels of E_{2g} mode in graphene

Image removed due to copyright restrictions.
Please see Fig. 4b in Bonini, Nicola, et al. "Phonon Anharmonicities in Graphite and Graphene." arXiv:0708.4259v2 [cond-mat.mtrl-sci], 2007.
Phonon decay channels of E_{2g} and A'_1 modes

Strong T-dependence of A'_1 mode due to TA-LA and LO-LA decay channels.

Importance of the acoustic phonon population for the transport properties.

Image removed due to copyright restrictions.
Please see: Fig. 4c, d in Bonini, Nicola, et al. "Phonon Anharmonicities in Graphite and Graphene." arXiv:0708.4259v2 [cond-mat.mtrl-sci], 2007.
Nanotube electrical interconnects

High electric field

Hot electrons
(E > 0.16 eV)

Strong el-ph scattering

Heat dissipation bottleneck

Hot phonons
(optical phonons)

Low energy acoustic phonons

\(\tau^{EP} \sim 0.5 \text{ ps} \)

\(\tau^{PP} \gg \tau^{EP} \)

Courtesy of Nicola Bonini. Used with permission.

Boltzmann transport equation
for electrons and phonons to model nanotubes on substrate [1]

\[\tau^{PP} \sim 5 \text{ ps} \gg \tau^{EP} \sim 0.5 \text{ ps} \]

(parameter) (ab initio)

Image removed due to copyright restrictions.