1. A set of Cartesian axes x_i is transformed to a new set x_i' by a clockwise rotation of θ about the x_2 axis:
 (a) Sketch the position of the new coordinate system relative to the original system.
 (b) Label the angles corresponding to the inverse cosines of c_{11}, c_{13}, c_{31}, c_{23} and c_{32}.
 (c) Evaluate the direction cosine array c_{ij} by determining cosines of the appropriate angles.

2. For each of the following operations, write the equations specifying the new axes x_i' in terms of the original axes x_i. Establish the direction cosine scheme by extracting the appropriate coefficients from these equations.
 (a) reflection in the x_2x_3 plane
 (b) a 120° rotation about the [111] axis of a cubic crystal
 (c) a 2-fold rotation about [110] in a cubic crystal

3. Aragonite is an orthorhombic form of CaCO$_3$, point group 2/m 2/m 2/m, with lattice constants $a = 4.94$, $b = 7.94$, $c = 5.72$ Å. Measured relative to the crystallographic axes, the dielectric susceptibility* is given by
 $$ k_{ij} = \varepsilon_0 \begin{bmatrix} 8.8 & 0 & 0 \\ 0 & 6.7 & 0 \\ 0 & 0 & 5.6 \end{bmatrix} $$
 where ε_0, the permittivity of space, is 8.85×10^{-12} coulombs/volt-meter. Suppose a (101) plate is cut from the crystal. What is the form of the susceptibility tensor referred to axes taken relative to the plate?

*The dielectric susceptibility relates polarization, P (dipole moment per unit volume) to an applied electric field: $P_i = k_{ij} E_j$