18.075 Practice Test II for Exam 2

Justify your answers. Cross out what is not meant to be part of your solution.

Total number of points: 60.

I. Consider the integral

\[I = \int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 - \pi^2)(x^2 + 1)} \, dx \quad (1). \]

1. (2pts) By replacing \(x \) by the complex variable \(z \), locate and characterize all
 singularities of the integrand (viewed as a function of \(z \)).

2. (2pts) Locate and characterize all the singularities of \(\frac{z e^{iz}}{(x^2 - \pi^2)(x^2 + 1)} \), i.e., repeat
 part (a) after replacing \(\sin x = \text{Im}(e^{ix}) \) by \(e^{iz} \).

3. (6pts) Define the principal value and indented contours in order to evaluate
 the given integral \(I \) of (1) above. In particular, state which parts of the contours
 finally contribute zero and why.

4. (10pts) Evaluate the requisite integral \(I \) by use of the residue theorem.

II. (15pts) Consider the real integral

\[I = \int_{0}^{\infty} \frac{x}{x^4 + 1} \, dx. \]

Evaluate \(I \) by use of the residue theorem. **Hint:** Integrate \(f(z) = \frac{z}{i(z^4 - 1)} \)
(\(z = x + iy \)) around the closed contour consisting of the portions of the \(x \) (real) and \(y \)
(imaginary) axes for which \(0 \leq x \leq R \), and \(0 \leq y \leq R \), and a quadrant of the circle
\(|z| = R \), and finally let \(R \to \infty \).

III. Find the region of convergence of the following series by using the ratio or
Cauchy (root) test, where \(x \) is real.

1. (4pts) \(\sum_{n=0}^{\infty} \frac{x^n}{n!} \).

2. (4pts) \(\sum_{n=0}^{\infty} \frac{x^n}{n!} (x + 2)^n \).

IV. Locate and classify the singular points of the following differential equations.

1. (2pts) \(\frac{d^2 u}{dy^2} + x \frac{du}{dx} + x^2 y = 0. \)

2. (3pts) \(x^2 \frac{d^2 y}{dx^2} - (x^2 + 2) \frac{dy}{dx} - (x + 1)y = 0. \)

V. Consider the differential equation

\[x^2 \frac{d^2 y}{dx^2} + (x^2 - x) \frac{dy}{dx} + y = 0. \]

1. (6pts) By substituting \(y = \sum_{n=0}^{\infty} A_n x^n \), express the left-hand side of the differential equation as a power series, each term involving the (common) factor \(x^n \).

2. (6pts) Determine the recurrence formula for the coefficients \(A_n \). (You are NOT asked to find the final solution \(y(x) \).) How many independent solutions does this method give?