True-False review questions on sequences and series

Each of the statements below is either true or false. If true, prove. If false, give a counterexample. \(\langle a_n \rangle \) is a sequence, another notation \(\sum_{n=1}^{\infty} a_n \).

1. Given \(\epsilon > 0 \), \(a_n \geq 1 - \epsilon \) for \(n \geq 1 \) \(\Rightarrow \lim_{n \to \infty} a_n = 1 \).

2. \(\langle x_n \rangle \) converges \(\Rightarrow \langle x_n \rangle \) is a Cauchy sequence.

3. a) \(x_n \to 0 \) \(\iff \left| x_n \right| \to 0 \)
 b) \(x_n \to L \) \(\iff \left| x_n \right| \to |L| \)

4. \(\langle a_n \rangle \) positive, decreasing \(\Rightarrow \sum (-1)^n a_n \) converges.

5. \(\langle a_n \rangle \) diverges \(\Rightarrow a_n \to \infty \) or \(a_n \to -\infty \).

6a. \(\langle x_n \rangle \) converges \(\Rightarrow \langle x_n \rangle \) bounded for all \(n \).
 b. \(n a_n \to 0 \) \(\Rightarrow \sum a_n \) converges.

7. For all \(\epsilon > 0 \), \(|a_{n+1} - a_n| < \epsilon \) for \(n \geq 1 \) \(\Rightarrow \langle a_n \rangle \) converges.

8a. \(\langle x_n \rangle \to 0 \) \(\iff \langle \frac{1}{x_n} \rangle \to \infty \).

10. \(x = \sup \langle a_n \rangle \) \(\Rightarrow x \) is a cluster pt. of \(\langle a_n \rangle \).

11. If \(\left| \frac{a_{n+1}}{a_n} \right| < 1 \) for all \(n \), then \(\sum a_n \) converges.

12a. \(\sum a_n \) converges \(\Rightarrow a_n \to 0 \).
 b. \(\sum a_n \) converges \(\iff \sum \frac{1}{a_n} \).

13. Every power series has a positive radius of convergence. \(R \), or \(R = \infty \).

14. \(a_n \to L \), \(L > 0 \) \(\Rightarrow a_n > 0 \) for \(n \geq 1 \).

15. \(a_n \to L \), \(L \geq 0 \) \(\Rightarrow a_n \geq 0 \) for \(n \geq 1 \).
1. Given \(c > 0 \),
\[
\left| \frac{a_n}{n^2} - \frac{1}{n^2} \right| = \left| \frac{1 - c}{n^2} \right| < \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} \tag{by \(\Delta \neq \)}
\]
\[
< \frac{1}{n^2} + \frac{2}{n^2} = \frac{3}{n^2};
\]
\[
\frac{4}{n^2} < c \text{ if } n > \frac{4}{c}.
\]

2. By the ratio test,
\[
\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)!}{n!} \frac{c^n}{c^{n+1}} \frac{(n+2)!}{(n+1)!} = \frac{(n+1)(n+2)}{n+2} = \frac{n+2}{n+1} \frac{c^n}{c^{n+1}} \frac{n+2}{n+1} \frac{c^n}{c^{n+1}}
\]
\[
\rightarrow 4|x| < 1 \Leftrightarrow |x| < \frac{1}{4}.
\]
\(a_n \) converges, \(\Rightarrow |x| < \frac{1}{4} \); diverges, \(\Rightarrow |x| > \frac{1}{4} \).

3. \(a_n = \frac{c^n}{n^n} \) if \(c > 1 \).

4. \(a_n = \frac{1}{n^2} \) is decreasing for \(n > 1 \): \[
\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \frac{c^n}{c^{n+1}} \frac{n+1}{n} = \frac{c}{n+1} \frac{c^n}{c^{n+1}} \frac{n+1}{n+1} \frac{c^n}{c^{n+1}} \frac{n+1}{n+1} \frac{c^n}{c^{n+1}} < 1 \text{ if } n > c - 1.
\]

5. \(a_n \) converges, \(\rightarrow |x| < \frac{1}{4} \); diverges, \(\Rightarrow |x| > \frac{1}{4} \).

6. Let \(p_i = i^{th} \) prime, and \(n_i = p_i^k \) (for a fixed \(k \))

Then \(\frac{h(n_i)}{s(n_i)} = \frac{p_i}{k} \), \(s(n_i) \) converges to \(\frac{1}{k} \), and \(\frac{1}{k} \) is a cluster point of \(s(n_i) \). By the cluster pt. thm \(S(n) \) doesn't exist, for if it had the limit \(L \), all subsequences would have \(\lim_{n \to 0} a_n = L \).

7. Choose \(x_n \) to be any element of \(S \)

such that \(x_n > n \).

Such an elt. exist since \(S \) is nonempty and not bounded above (if there were no such \(x_n \), then \(n \) would be an upper bound for \(S \)).

Then \(\lim_{n \to 0} x_n = \infty \), since \(\frac{1}{n} \) diverges, given \(M > 0 \), \(x_n > n > M \) for all \(n > M \).

8. You can use the vertical test to prove that \(\frac{c^n}{s^n} \) converges, and therefore \(\lim_{n \to 0} \frac{c^n}{s^n} = 0 \), by the \(n^{th} \) term test for divergence.