18.100B Problem Set 1 Solutions
Sawyer Tabony

1) The proof is by contradiction. Assume \(\exists r \in \mathbb{Q} \) such that \(r^2 = 12 \). Then we may write \(r \) as \(\frac{a}{b} \) with \(a, b \in \mathbb{Z} \) and we can assume that \(a \) and \(b \) have no common factors. Then

\[
12 = r^2 = \left(\frac{a}{b} \right)^2 = \frac{a^2}{b^2},
\]

so \(12b^2 = a^2 \).

Notice that 3 divides \(12b^2 \) and hence 3 divides \(a^2 \). It follows that 3 has to divide \(a \) (one way to see this: every integer can be written as either \(3n \), \(3n + 1 \), or \(3n + 2 \) for some integer \(n \). If you square these three choices, only the first one gives you a multiple of three.)

Let \(a = 3k \), for \(k \in \mathbb{Z} \). Then substitution yields \(12b^2 = (3k)^2 = 9k^2 \), so dividing by 3 we have \(4b^2 = 3k^2 \), so 3 divides \(4b^2 \) and hence 3 divides \(b^2 \). Just as for \(a \), this implies that \(b \) has to divide \(b \). But then \(a \) and \(b \) share the common factor of 3, which contradicts our choice of representation of \(r \). So there is no rational number whose square is 12.

2) \(S \subseteq \mathbb{R}, S \neq \emptyset \), and \(u = \sup S \). Given any \(n \in \mathbb{N}, \forall s \in S, s \leq u < u + \frac{1}{n} \), so \(u + \frac{1}{n} \) is an upper bound for \(S \). Assume \(u - \frac{1}{n} \) is also an upper bound for \(S \). Since \(u - \frac{1}{n} < u \), \(u \) would not be the least upper bound for \(S \), which is a contradiction. Therefore \(u - \frac{1}{n} \) is not an upper bound for \(S \).

3) Recall that a subset of the real numbers, \(A \subseteq \mathbb{R} \), is bounded if there are real numbers \(a \) and \(a' \) such that

\[
t \in A \implies a' \leq t \leq a.
\]

Since \(A, B \subseteq \mathbb{R} \) are bounded, they have upper bounds \(a \) and \(b \) respectively, and lower bounds \(at \) and \(bt \). Let \(\alpha = \max(a, b) \) and \(\beta = \min(at, bt) \). Clearly,

\[
t \in A \implies \beta \leq a' \leq t \leq a \leq \alpha
\]

\[
t \in B \implies \beta \leq b' \leq t \leq b \leq \alpha,
\]

hence any \(t \in A \cup B \) satisfies \(\beta \leq t \leq \alpha \) and \(A \cup B \) is bounded.

Notice that, in particular, this shows that \(\max\{\sup A, \sup B\} \) is an upper bound for \(A \cup B \), so we only have to show that it is the least upper bound. Suppose \(\gamma < \max\{\sup A, \sup B\} \). Then without loss of generality, \(\gamma < \sup A \). By definition of supremum, \(\gamma \) is not an upper bound of \(A \), so \(\exists a \in A \) with \(\gamma < a \). But \(a \in A \Rightarrow a \in A \cup B \), so \(\gamma \) is not an upper bound of \(A \cup B \). Therefore

\[
\max\{\sup A, \sup B\} = \sup A \cup B.
\]

4) Start by noting that, if \(n, m \in \mathbb{N} \) then \(b^n b^m = b^{n+m} \) from which it follows that \(b^n b^m = b^{n+m} \) for \(n, m \in \mathbb{Z} \) (why?). Similarly, you can show that \(b^m = \left(b^n \right)^m \) for \(n, m \in \mathbb{Z} \). Recall that, if \(x > 0 \), then \(x^{\frac{1}{n}} \) is defined to be the unique positive real number such that \(\left(x^{\frac{1}{n}} \right)^n = x \).

a) We have that \(m/n = p/q \) so \(mq = pn \). Notice that \(\left(\left(b^n \right)^{\frac{1}{n}} \right)^m = \left(b^n \right)^q = b^{mq} \) and that

\[
\left(\left(b^n \right)^{\frac{1}{n}} \right)^m = \left(b^n \right)^m = b^{mn},
\]

which is also equal to \(b^{mq} \). But we know that there is a unique real
number y satisfying $y^{nq} = b^{mq}$ hence the two numbers we started with have to be equal, i.e.,

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}.$$

Notice that if this equality didn’t hold, then we could not make sense of the symbol b^r for $r \in \mathbb{Q}$, because the value would change if we wrote the same number r in two different ways.

b) Let $r, s \in \mathbb{Q}$ with $r = \frac{m}{n}$ and $s = \frac{p}{q}$. Since nq is an integer we know that

$$(b^r b^s)^{nq} = (b^r)^{nq} (b^s)^{nq}$$

but $(b^r)^{nq} = \left((b^m)^{\frac{1}{n}}\right)^{nq} = (b^m)^{\frac{nq}{n}} = b^{mq}$ and similarly $(b^s)^{nq} = b^{np}$. Since mq and np are integers we can conclude

$$(b^r b^s)^{nq} = b^{mq} b^{np} = b^{mq+np}.$$

But there is a unique positive real number, y, such that $y^{nq} = y^{mq+np}$, so we know that

$b^r b^s = (b^{mq+np})^{\frac{1}{nq}} = b^{\frac{mq+np}{nq}} = b^{\frac{nq}{n} + \frac{nq}{q}} = b^{r+s}.$

c) Now with $b > 1$, given $r, s \in \mathbb{Q}, s \leq r$ we want to show $b^s \leq b^r$. Let $r - s = \frac{m}{n}$, $0 < n, 0 \leq m$ since $s \leq r$. Then $b^{r-s} = (b^m)^{\frac{1}{n}}$, and it is easy to see that $1 \leq b^m$, since $0 \leq m$ and $1 < b$.

Thus a positive power of b^{r-s} is greater than or equal to 1, which implies $1 \leq b^{r-s}$. Multiplying by b^s gives $b^s \leq b^{r-s} b^s = b^{(r-s)+s} = b^r$, so $b^s \leq b^r$. Hence for any $b^s \in B(r)$, $s \leq r \Rightarrow b^s \leq b^r$, so b^r is an upper bound for $B(r)$. Since $b^r \in B(r)$, b^r must be the least upper bound, so $b^r = \sup B(r)$.

d) So let $x, y \in \mathbb{R}$. If $r, s \in \mathbb{Q}$ are such that $r \leq x, s \leq y$, then $r + s \leq x + y$ so $b^{r+s} \in B(x+y)$ and $b^r b^s \leq b^{x+y}$. Keeping s fixed, notice that for any $r \leq x$ we have

$$b^r \leq \frac{b^{r+y}}{b^x},$$

thus $\frac{b^{r+y}}{b^x}$ is an upper bound for $B(x)$ which implies $b^r \leq \frac{b^{r+y}}{b^x}$. We rearrange this to

$$b^s \leq \frac{b^{r+y}}{b^x}$$

and conclude that $b^y \leq \frac{b^{x+y}}{b^x}$ or $b^r b^y \leq b^{x+y}$.

Suppose the inequality is strict. Then $\exists t \in \mathbb{Q}$, $t < x+y$, such that $b^r b^y < b^t \, ^1$. We will find $r, s \in \mathbb{Q}$, with $r \leq x, s \leq y$ and $t < r+s < x+y$. First, find $N \in \mathbb{N}$ so that $N \left(x+y-t\right) > 1$, then find $r \in \mathbb{Q}$ so that $x - \frac{1}{2N} < r < x$ and $s \in \mathbb{Q}$ such that $y - \frac{1}{2N} < s < y$ (the existence of N, r, s follow from the Archimedean property of \mathbb{R} as shown in class). Now, notice that

$$N \left(x+y-t\right) > 1 \implies t < x+y - \frac{1}{N},$$

$$x - \frac{1}{2N} < r < x \text{ and } y - \frac{1}{2N} < s < y \implies x+y - \frac{1}{N} < r+s < x+y$$

hence we have $t < r+s < x+y$ just like we wanted.

\(^1\)This is true even if $x+y \in \mathbb{Q}$, notice that $\sup B(x+y) = \sup \{b^t : t \in \mathbb{Q}, t < x+y\}$
But now we have
\[b^r b^y < b^t < b^{r+s} = b^r b^y \]
which is a contradiction because, since \(r < x \) and \(s < y \), we have \(b^r < b^x \) and \(b^y < b^y! \) \(^2\)

5) We know that in any ordered field, squares are greater than or equal to zero. Since \(i^2 = -1 \), this means that \(0 \leq -1 \). But then \(1 = 0 + 1 \leq -1 + 1 = 0 \leq 1 \) which implies \(0 = 1 \), a contradiction!

6) I’ll write \(\preccurlyeq \) for this relation on \(\mathbb{C} \) to distinguish it from the normal order on \(\mathbb{R} \). To show that \(\preccurlyeq \) is an order on \(\mathbb{C} \), we must show both transitivity and totality (or given \(x, y \in \mathbb{C} \), exactly one of the following is true: \(x \ll y \), \(y \ll x \), or \(x = y \)). First for transitivity, let \(x, y, z \in \mathbb{C} \), \(x = a + bi \), \(y = c + di \), \(z = e + fi \) such that \(x \ll y \ll z \). Therefore \(a \leq c \leq e \), so \(a \leq e \) by the transitivity of the order on \(\mathbb{R} \). If \(a < e \), then \(x \ll z \), so we are done. If \(a = e \), then \(a = c = e \) so we have from the definition of \(\ll \) that \(b < d < f \), so once again by the transitivity of the order on \(\mathbb{R} \), \(b < f \). Now \(a = e \) and \(b < f \Rightarrow x \ll z \), so we have shown transitivity.

Now to show totality. Consider \(x, y \in \mathbb{C} \), \(x = a + bi \), \(y = c + di \). Without loss of generality, let \(a \leq c \). Suppose \(a = c \). Then \(b < d \Leftrightarrow x \ll y \), \(b > d \Leftrightarrow y \ll x \), and \(b = d \Leftrightarrow x = y \), so by the totality of the order on \(\mathbb{R} \), we have the totality of \(\ll \) on \(\mathbb{C} \) in the case of \(a = c \). Suppose instead that \(a < c \). Then we know \(x \ll y \), and it is not the case that \(y \ll x \) or \(x = y \), so we have totality in this case as well. Thus we have proven that \(\ll \) is an order on \(\mathbb{C} \).

This order does not have the least-upper-bound property. Consider the set of complex numbers with real part less than or equal to zero:
\[S = \{ a + bi : a \leq 0, b \in \mathbb{R} \}. \]

\(S \) is bounded above, for instance by the number 1, but it is not possible for any number \(z = a + bi \) to be the supremum of \(S \). If \(a \leq 0 \), then \(a + bi \ll a + (b + 1)i \in S \), so \(a + bi \) is not an upper bound for \(S \). If \(a > 0 \), then \(a + (b - 1)i \ll a + bi \), and \(a + (b - 1)i \) is also an upper bound for \(S \), so \(a + bi \) is not the least upper bound. Therefore \(S \) has no least upper bound, even though it is bounded above.

7) \(x, y \in \mathbb{R}^k \), so let \(x = (a_1, a_2, \ldots, a_k) \), \(y = (b_1, b_2, \ldots, b_k) \). Then
\[
|x + y|^2 + |x - y|^2 = \sum_{i=1}^{k} (a_i + b_i)^2 + \sum_{j=1}^{k} (a_j - b_j)^2 = \sum_{i=1}^{k} (a_i + b_i)^2 + (a_i - b_i)^2
\]
\[= \sum_{i=1}^{k} (a_i^2 + 2a_i b_i + b_i^2 + a_i^2 - 2a_i b_i + b_i^2) = \sum_{i=1}^{k} (2a_i^2 + 2b_i^2) = 2(|x|)^2 + 2(|y|)^2. \]

The geometric interpretation comes from looking at the parallelogram whose vertices are the points 0, \(x \), \(x + y \) and \(y \). Then the equation states that the sum of the squares of the lengths of the two diagonals (the vectors \(x + y \) and \(x - y \)) is the same as the sum of the squares of the lengths of the four sides.

\(^2\)A different proof of \(b^{r+s} \leq b^r b^s \) could start by justifying \(b^r = \inf\{b^r : r \in \mathbb{Q}, r \geq z \} \) and then proceeding as in the proof of \(b^r b^y \leq b^{r+y} \).