Problems:

1) (10 pts) Prove that the empty set is a subset of every set.

2) (10 pts) If \(x, y \) are complex, prove that
\[
| |x| - |y| | \leq |x - y|.
\]
(Hint: This is equivalent to proving the following two inequalities: \(|x| \leq |x - y| + |y| \) and \(|y| \leq |x - y| + |x| \). Why?)

3) (10 pts) Find \(\text{sup} \ M \) and \(\text{inf} \ M \) for:
 a) \(M = \{ \frac{|x|}{1 + |x|} : x \in \mathbb{R} \} \),
 b) \(M = \{ \frac{x}{1 + x} : x > -1 \} \),
 c) \(M = \{ x + \frac{1}{x} : \frac{1}{2} < x < 2 \} \).

4) (10 pts) Let:
 a) \(S \) be the set of all natural numbers that are not divisible by a square number;
 b) \(T \) be the set of all natural numbers that have exactly three prime divisors;
 c) \(U \) be the set of all natural numbers that are less or equal than 200.
Determine \(S \cap T \cap U \) explicitly.

5) (10 pts) Let \(X \) and \(Y \) be two disjoint sets. Suppose further that \(X \sim \mathbb{R} \) and that \(Y \sim \mathbb{N} \)
 (i.e. the set \(Y \) is countable). Show that \(Z = X \cup Y \) satisfies \(Z \sim \mathbb{R} \).

6) (10 pts) Construct a bounded set of real numbers with exactly three limit points. In addition,
 construct a bounded set of real numbers with countably many limit points.

7) (10 pts) Let \(E \) be a subset of a metric space. The \textit{interior} \(E^o \) is defined by
\[
E^o = \{ x \in E : x \text{ is an interior point} \}.
\]
 a) Prove that \(E^o \) is always open.
 b) Prove that \(E \) is open if and only if \(E^o = E \).
 c) If \(G \subseteq E \) and \(G \) is open, prove that \(G \subseteq E^o \).
Extra problems:

1) Consider the function \(f : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C} \setminus \{0\} \) with \(f(z) = 1/z \). Sketch the following sets in the complex plane:
 a) \(f(\mathbb{R} \setminus \{0\}) \),
 b) \(f(B_r) \) where \(B_r = \{ z \in \mathbb{C} : |z| = r \} \) and \(r > 0 \),
 c) \(f(i\mathbb{R} \setminus \{0\}) \),
 d) \(f(A) \) where \(A = \{ z \in \mathbb{C} : \text{Re} \ z = 1 \} \).
[Recall that, for a given function \(f : X \rightarrow Y \), the set \(f(E) = \{ f(x) : x \in E \} \) is the image of a subset \(E \subseteq X \) under \(f \).]

2) A complex number \(z \) is said to be
 algebraic if there are integers \(a_0, \ldots, a_n \), not all zero, such that
 \(a_0 z^n + a_1 z^{n-1} + \cdots + a_n = 0 \).
 Prove that the set of all algebraic numbers is countable.
 \textit{Hint:} For every positive integer \(N \) there are only finitely many equations with
 \(n + |a_0| + |a_1| + \cdots + |a_n| = N \).

3) If you think of the existence of a 1-1 map from \(A \) into \(B \) as saying that \(A \) is ‘not bigger than’ \(B \) (think \(\leq \)). Then this exercise proves that: if \(A \) is not bigger than \(B \) and \(B \) is not bigger than \(A \), then \(A \) and \(B \) are the same size.
 Prove the Schroeder-Bernstein theorem
 If \(A \) and \(B \) are any two sets, \(f \) is a 1-1 map from \(A \) into \(B \) and \(g \) is a 1-1 map from \(B \) into \(A \), then there exists a map \(F \) from \(A \) to \(B \) which is 1-1 and onto, i.e., \(A \sim B \).
 by the following steps (due to Birkhoff and MacLane):
 i) Define ‘ancestors’ as follows: Let \(a \in A \), if \(a \in g(B) \) then we call \(g^{-1}(a) \) the first ancestor of \(a \) (we call \(a \) itself the zero\(^{th} \) ancestor of \(a \)). If \(g^{-1}(a) \) is in \(f(A) \) then we call \(f^{-1}(g^{-1}(a)) \) the second ancestor of \(a \). If this is in the image of \(g \), then we call \(g^{-1}(f^{-1}(g^{-1}(a))) \) the third ancestor of \(a \) and so on.
 Show that this divides \(A \) into three disjoint subsets: \(A_\infty \) made up of the elements that have infinitely many ancestors, \(A_e \) made up of the elements that have an even number of ancestors, and \(A_o \) made up of the elements that have an odd number of ancestors.
 ii) Show that you can partition \(B \) into three similar subsets: \(B_\infty \), \(B_e \), and \(B_o \).
 iii) Identify \(f(A_\infty) \), \(f(A_e) \), and \(f(A_o) \).
 iv) Define
 \[
 F(a) = \begin{cases}
 f(a) & \text{if } a \in A_\infty \cap A_e \\
 g^{-1}(a) & \text{if } a \in A_o
 \end{cases}
 \]
 and show that \(F \) is a 1-1 correspondence between \(A \) and \(B \).

4) Show that if \(Sq = [0,1] \times [0,1] \) is the unit square and \(I = [0,1] \) is one of its sides, then \(Sq \sim I \).