Problem 1.

Proof. It is true that for any two sets A, B, the intersection $A \cap B$ is a subset of A. Now consider $\phi = A \cap A^c$. So ϕ is a subset of A for any set A. \hfill \Box

Problem 2.

Proof. Notice that $||x| - |y|| \leq |x - y|$ ⇔ $|x| - |y| \leq |x - y|$ and $|y| - |x| \leq |x - y|$.
So we only need to prove that $|x| \leq |x - y| + |y|$ and $|y| \leq |x - y| + |x|$.
But both of them is a consequence from the triangle inequality $|a - b| \leq |a - c| + |b - c|$. \hfill \Box

Problem 3.

(a) $M = \{ \frac{|x|}{1 + |x|} : x \in \mathbb{R} \}$.

Proof. Notice that

\[
\frac{|x|}{1 + |x|} = \frac{1}{\frac{1}{|x|} + 1}
\]

so if $|x| < |y|$ then

\[
\frac{|x|}{1 + |x|} < \frac{|y|}{1 + |y|}.
\]

Thus the supremum is $\frac{1}{0+1} = 1$ and the infimum is $\frac{0}{1+0} = 0$. \hfill \Box

(b) $M = \{ \frac{x}{1 + x} : x > -1 \}$.

Proof. We can change the variable x to y, $\frac{x}{1 + x} = \frac{y - 1}{y} = 1 - \frac{1}{y}$, where $y = x + 1$. From $x > -1$, we have $y > 0$. Notice that

$\frac{1}{y}$ decreases \Rightarrow y increases \Rightarrow $(1 - \frac{1}{y})$ increases,

so the supremum is $1 - 0 = 1$ and the infimum is $-\infty$ (because for every $N > 1$ we have

\[
\frac{\frac{N}{1-N}}{1 + \frac{N}{1-N}} = -N
\]

and so the infimum is less than $-N$). \hfill \Box
(c) $M = \{x + \frac{1}{x} | 1/2 < x < 2\}$.

Proof. It is always true that

$$\frac{a + b}{2} \geq \sqrt{ab},$$

for instance, if square both sides and rearrange, this is the same as saying $a^2 + b^2 \geq 0$.

Thus, we see that

$$x + \frac{1}{x} \geq 2\sqrt{x \cdot \frac{1}{x}} = 2$$

Since setting $x = 1$ in $x + \frac{1}{x}$ we get 2, we know that $\inf M = 2$.

Suppose we have $x_1 > x_2$, consider

$$x_1 + \frac{1}{x_1} - \left(x_2 + \frac{1}{x_2} \right) = \frac{(x_1 - x_2)(x_1x_2 - 1)}{x_1x_2} > 0,$$

i.e. $x + \frac{1}{x}$ is an increasing function; if $x_1, x_2 < 1$, then

$$x_1 + \frac{1}{x_1} - \left(x_2 + \frac{1}{x_2} \right) = \frac{(x_1 - x_2)(x_1x_2 - 1)}{x_1x_2} < 0,$$

i.e. $x + \frac{1}{x}$ is a decreasing function. Then the sup must be obtained at the boundary of $(1/2, 2)$.

Since

$$\lim_{x \to 2} \left(x + \frac{1}{x} \right) = \lim_{x \to 1/2} \left(x + \frac{1}{x} \right) = \frac{5}{2},$$

we have $\sup M = \frac{5}{2}$.

□

Problem 4.

Proof. The answer is:

<table>
<thead>
<tr>
<th>n</th>
<th>30</th>
<th>42</th>
<th>66</th>
<th>78</th>
<th>102</th>
<th>114</th>
<th>138</th>
<th>174</th>
<th>186</th>
<th>70</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>2</td>
</tr>
<tr>
<td>p2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>p3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>31</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>130</th>
<th>170</th>
<th>190</th>
<th>154</th>
<th>182</th>
<th>105</th>
<th>165</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>p2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>p3</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>11</td>
<td>13</td>
<td>7</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

□
Problem 5.

Proof. From \(X \sim \mathbb{R} \), then there is a \(1 - 1 \) mapping \(\alpha : X \to \mathbb{R} \). Similarly we have a \(1 - 1 \) mapping \(\beta : Y \to \mathbb{N} \). So to prove \(Z = X \cup Y \sim \mathbb{R} \), we only need to prove that there is a \(1 - 1 \) mapping \(\gamma : Z \to \mathbb{R} \). It is equivalent to show that there is \(1 - 1 \) mapping \(\delta : \mathbb{N} \cup \mathbb{R} \to \mathbb{R} \). The \(\delta \) can be constructed by the following method:

\[
\delta(x) = \begin{cases}
 x & \text{if } x \in \mathbb{R} \setminus \mathbb{Z}; \\
 x & \text{if } x \in \mathbb{Z} \subset \mathbb{R} \text{ and } x \leq 0; \\
 2x & \text{if } x \in \mathbb{Z} \subset \mathbb{R} \text{ and } x > 0; \\
 2x + 1 & \text{if } x \in \mathbb{N}.
\end{cases}
\]

It is easy to check that it is an \(1 - 1 \) mapping. \(\square \)

Problem 6.

Proof. Consider the sets

\[
A_0 = \{ \frac{1}{n} | n \in \mathbb{N} \}, \\
A_1 = \{ \frac{1}{n} + 1 | n \in \mathbb{N} \}, \\
A_2 = \{ \frac{1}{n} + 2 | n \in \mathbb{N} \}.
\]

Then \(A_i \) has only one limit point \(i \), for \(i = 0, 1, 2 \). If let \(A = \bigcup_{i=0}^{2} A_i \), we get a bounded set \(A \) with three limit points.

Consider the set

\[
\mathcal{A} = \{ \frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{N} \},
\]

we check that the limit points of \(\mathcal{A} \) are precisely the points in \(A_0 \cup \{0\} \). Indeed, if we fix \(n_0 \in \mathbb{N} \) then the set

\[
\{ \frac{1}{n_0} + \frac{1}{m} : m \in \mathbb{N} \},
\]

has \(\frac{1}{n_0} \) as a limit point and is a subset of \(\mathcal{A} \), hence \(\mathcal{A} \) has \(\frac{1}{n_0} \) as a limit point, for any \(n_0 \in \mathbb{N} \). Also \(A_0 \subseteq \mathcal{A} \) so zero is a limit point of \(\mathcal{A} \). To see that there are no other limit points, pick a point \(x \in \mathbb{R} \) that is not equal to \(\frac{1}{n} \) for any \(n \in \mathbb{N} \), we show that \(x \) is not a limit point of \(\mathcal{A} \). We can find \(N \in \mathbb{N} \) such that

\[
\frac{1}{N} < x < \frac{1}{N - 1}
\]

Pick \(\varepsilon > 0 \) small enough so that

\[
\frac{1}{N} < x - \varepsilon < x < x + \varepsilon < \frac{1}{N - 1}
\]

and notice that there are at most finitely many elements of \(\mathcal{A} \) in \((x - \varepsilon, x + \varepsilon) \). Here is one way to see this: if \(n \) and \(m \) are both bigger than \(2N \) then \(\frac{1}{n} + \frac{1}{m} < \frac{1}{N} \), if \(n < N \) then \(\frac{1}{n} + \frac{1}{m} > \frac{1}{N} \), while if \(2N \geq n > N \) then

\[
\frac{1}{N} < \frac{1}{n} + \frac{1}{m} \iff -\frac{1}{m} < \frac{1}{n} - \frac{1}{N} = \frac{N - n}{nN} \iff m < \frac{nN}{n - N},
\]

finally if \(n = N \), and \(m \) is large enough then \(\frac{1}{n} + \frac{1}{m} < x - \varepsilon \). So there are finitely many possible pairs \((n, m) \) with \(x - \varepsilon < \frac{1}{n} + \frac{1}{m} < x + \varepsilon \).
Since there are only finitely many elements of A inside $(x - \varepsilon, x + \varepsilon)$ we can find $k \in \mathbb{N}$ so that $(x - \frac{\varepsilon}{k}, x + \frac{\varepsilon}{k})$ contains no element of A except possibly x itself. This proves that x is not a limit point of A.

Problem 7.

Proof. (a) The points in E^0 are interior points of E, to show that E^0 is open we need to show that they are interior points of E^0. Given $x \in E^0$, by definition, there exist a open ball $x \in B_r(x) \subset E$. Consider an open ball $B_{r/3}(x) \subset B_r(x)$. Then for any point $y \in B_{r/3}(x)$, $B_{r/3}(y) \subset B_r(x) \subset E$, so $y \in E^0$. Then $B_{r/3}(x)$ is an open ball in E^0. So x is an interior point of E^0.

(b) If $E = E^0$, from (a) we know that E is open. Conversely, if E is open, all points in E are interior points, so $E \subset E^0$. From $E^0 \subset E$ we have $E = E^0$.

(c) Since G is open, so for any point $g \in G$, we have an open ball $B_r(g) \subset G \subset E$. So g is also an interior point of E. Then $G \subset E^0$.

\qed