Recap solution by characteristics of \(u_t + c_0 u_x = 0 \) [linearized traffic flow] and \(u_t + c_0 u_x = a^* u \).

Examples: Linear problems with constant or simple variable coefficients, where all the calculations can be done exactly. In each example:
- Write characteristics in parametric form.
- Solve and draw the characteristics.
- Eliminate the characteristic variables and find the solution.
- Show where the solution is defined.

Example 1: \(u_t + c_0 u_x = a^* u \). IVP problem on \(-\infty < x < \infty, t > 0\).
Example 2: \(x^* u_x + y^* u_y = y \), \(u(x, 1) = g(x) \) for \(-\infty < x < \infty, y > 0\).
Example 3: \(u_x + x^2 u_y = y \), with \(u(x, 0) = g(x) \) for \(x > 0 \).
Show that this defines the solution to the right of \(y = x^3/3 \).