Instructions: Solve your favourite problems from the list below. Open problems are marked with *; hard (but feasible) problems are marked with *.

1. (Széky, 1997) For a simple graph \(G \) and \(k \in \mathbb{N} \), let \(kG \) denote the graph obtained from \(G \) by replacing every edge by \(k \) parallel edges. Show that \(k^2 \cdot \text{cr}(G) = \text{cr}(kG) \).

2. For \(t \in \mathbb{N} \), we are given an alphabet of size \(t \) and a string \(s \) of \(2^t \) letters. Find a (nonempty) substring \(s' \) of consecutive letters from \(s \) such that each letter occurs in \(s' \) an even number of times.

3. (Djidjev and Vrót, 2003) Given a simple topological graph \(G(V, E, D) \), where \(D \) stands for the planar embedding of the graph, let \(\ell(D) \) be the maximum number of edges crossed by a vertical line. The cut width \(\text{cw}(G) \) of a simple graph \(G(E, V) \) is defined as the minimum \(\ell(D) \) over all drawings \(D \) in which the vertices have distinct \(x \)-coordinates. (a) Show that \(\text{bw}(G) \leq \text{cw}(G) \). (b) Show that

\[
\text{cr}(G) = \Omega(\text{cw}(G)) - O \left(\sum_{p \in V} \deg(p) \right).
\]

4. (a) For every \(k \in \mathbb{N} \), construct a graph whose crossing number is \(k \).
(b) For every \(k \in \mathbb{N} \), find a graph \(G(V, E) \) and an edge \(pq \in E \) such that \(\text{cr}(G) = k \) but \(G'(V, E \setminus \{pq\}) \) is planar.
(c) Find 3-regular graphs \(G(E, V) \) such that \(\text{cr}(G) = 1 \), but \(G'(V, E \setminus \{pq\}) \) is planar for any edge \(pq \in E \).
(d) Every 3-regular graph \(G(V, E) \) has an edge \(pq \in E \) such that the crossing number of \(G'(V, E \setminus \{pq\}) \) is at least \(\Omega(\text{cr}(G)) - O(1) \). *
(e) (Richter and Thomassen, 1993) Show (d) for simple graphs. *

5. \(K \) is a complete geometric graph with \(n \) vertices, each edge is colored red or blue.
(a) (Bialostocki and Dierker) Show that \(K \) contains a monochromatic spanning tree with pairwise non-crossing edges if \(V \) forms the vertex set of a convex \(n \)-gon.
(b) (Károlyi et al., 1997) Show that \(K \) contains a monochromatic spanning tree with pairwise non-crossing edges. *
(c) Show that \(K \) contains \((n+1)/3\) pairwise disjoint edges of the same color.
(d) Color the edges of a complete graph \(K_n \) with two colors such that there are no \((n+1)/3 + 1\) pairwise disjoint edges of the same color.

6. Let \(\text{lin-cr}(G) \) denote the rectilinear crossing number of \(G \), which is the minimum number of crossings in a drawing of \(G \) with all edges drawn as straight line segments.
(a) Show that if \(\text{cr}(G) = 1 \), then \(\text{lin-cr}(G) = 1 \).
(b) Find a simple graph where \(\text{cr}(G) < \text{lin-cr}(G) \). *