Here is an end-of-term gift meant to assist you in your struggles with that resistor cube from Problem 36 yet more explicitly than via my old program QUICK that I already appended as a postscript to our 2-D resistor mesh from Problem 30. You are most welcome to employ this aptly named QUICK as a part of your own solution ... but, if so, only with the polite requirement that you include signs that you had at least to some extent actually comprehended and also proof-tested its marvelously rapid workings!

AT

Program QUICK3

implicit double precision (a-h,o-z)
dimension S2(0:99), WT(0:99)
pi = 4 * atan(1.0d0)
do 59 Nsize=2,100
 do 19 i=0,Nsize-1
 arg = pi * i / (2.0d0 * Nsize)
 S2(i) = sin(arg) * sin(arg)
 WT(i) = 2 * cos(arg) * cos(arg) / Nsize
 continue
 19 WT(0) = 1.0d0 / Nsize

 c ... Here 4 * S2(i) supplies 1-D eigenVALUES like 0,1,3 for Nsize=3
 c or 0, 2-sqrt(2), 2, and 2+sqrt(2) for Nsize=4, whereas WT(i)
 c reports the square of the vital first (or last) element of each
 c corresponding 1-D eigenVECTOR, now already divided by the sum
 c ssq = Nsize or Nsize/2 of the squares of all of its components.
 Rohms = 0
 do 49 K=0,Nsize-1
do 39 L=0,Nsize-1
do 29 M=0,Nsize-1
 KLM = K + L + M
 if (KLM.eq.2*(KLM/2)) go to 29
 c ... Yes, SKIP any composite K,L,M eigenvector for which the index
c sum K+L+M = even, since its first and last components would
c be identical, and it would contribute nothing to the sum below.
 Wcomp = WT(K) * WT(L) * WT(M)
 eigen = S2(K) + S2(L) + S2(M)
 Rplus = Wcomp / eigen
 Rohms = Rohms + Rplus
 if (Nsize.eq.4) then
 write (*,25) K,L,M, Wcomp, eigen, Rplus, Rohms
 format (10x, 3i5, 3x, 4f12.6)
 endif
 25 continue
 39 continue
 49 continue
 write (*,55) Nsize, Rohms
 format (20x, 'Nsize = ', i6, 5x, 'Rohms = ', f20.15)
 55 continue
 end