Lecture 5
Gram-Schmidt Orthogonalization

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson
September 21, 2006

The Modified Gram-Schmidt Algorithm

- The projection P_j can equivalently be written as
 $$P_j = P_{q_{j-1}} \cdots P_{q_2} P_{q_1} a_j$$

 where (last lecture)
 $$P_{q} = I - qq^*$$

- P_{q_j} projects orthogonally onto the space orthogonal to q, and
 $\text{rank}(P_{q}) = m - 1$

- The Classical Gram-Schmidt algorithm computes an orthogonal vector by
 $$v_j = P_j a_j$$

 while the Modified Gram-Schmidt algorithm uses
 $$v_j = P_{q_{j-1}} \cdots P_{q_2} P_{q_1} a_j$$

Gram-Schmidt Projections

- The orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors
 $$q_1 = P_1 a_1 = \frac{P_1 a_1}{\|P_1 a_1\|}, \quad q_2 = P_2 a_2 = \frac{P_2 a_2}{\|P_2 a_2\|}, \quad \ldots, \quad q_n = P_n a_n = \frac{P_n a_n}{\|P_n a_n\|}$$

 where
 $$P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^*$$
 with $\hat{Q}_{j-1} = [q_1 \, q_2 \, \ldots \, q_{j-1}]$

- P_j projects orthogonally onto the space orthogonal to (q_1, \ldots, q_{j-1}), and
 $\text{rank}(P_j) = m - (j - 1)$

Classical vs. Modified Gram-Schmidt

- Small modification of classical G-S gives modified G-S (but see next slide)

 or modified G-S is numerically stable (less sensitive to rounding errors)

 Classical/Modified Gram-Schmidt

 for $j = 1$ to n
 $$v_j = a_j$$

 for $i = 1$ to $j - 1$
 $$\begin{cases} r_{ij} = q_i^* a_j & (CGS) \\ r_{ij} = q_i^* v_j & (MGS) \end{cases}$$

 $$v_j = v_j - r_{ij} q_i$$

 $$r_{jj} = \|v_j\|_2$$

 $$q_j = v_j / r_{jj}$$

Implementation of Modified Gram-Schmidt

- In modified G-S, P_{q_j} can be applied to all v_j as soon as q_j is known

- Makes the inner loop iterations independent (like in classical G-S)

Example: Classical vs. Modified Gram-Schmidt

- Compare classical and modified G-S for the vectors
 $$a_1 = (1, \epsilon, 0, 0)^T, \quad a_2 = (1, 0, \epsilon, 0)^T, \quad a_3 = (1, 0, 0, \epsilon)^T$$

 making the approximation $1 + \epsilon^2 \approx 1$

- Classical:
 $$\begin{align*}
 v_1 &\leftarrow (1, \epsilon, 0, 0)^T, \quad v_{11} = \sqrt{1 + \epsilon^2} \approx 1, \quad q_1 = v_1 / 1 = (1, 1, 0, 0)^T \\
 v_2 &\leftarrow (1, 0, \epsilon, 0)^T, \quad v_{12} = q_1^* a_2 = 1, \quad v_2 = v_2 - 1 q_1 = (0, -\epsilon, 0, 0)^T \\
 v_3 &\leftarrow (1, 0, 0, \epsilon)^T, \quad v_{13} = q_1^* a_3 = 1, \quad v_3 = v_3 - 1 q_1 = (0, \epsilon, 0, 0)^T \\
 r_{22} &\leftarrow \sqrt{\epsilon}, \quad q_2 = v_2 / \sqrt{\epsilon} = (0, -1, 1, 0)^T / \sqrt{\epsilon} \\
 v_3 &\leftarrow (1, 0, 0, \epsilon)^T, \quad r_{23} = q_2^* a_3 = 0, \quad v_3 = v_3 - 0 q_2 = (0, -\epsilon, 0, \epsilon)^T \\
 r_{33} &\leftarrow \sqrt{\epsilon}, \quad q_3 = v_3 / \sqrt{\epsilon} = (0, 0, -1, 0)^T / \sqrt{\epsilon} \\
 \end{align*}$$

- Modified Gram-Schmidt:
 $$\begin{align*}
 v_1 &\leftarrow (1, \epsilon, 0, 0)^T, \quad v_{11} = \sqrt{1 + \epsilon^2} \approx 1, \quad q_1 = v_1 / 1 = (1, \epsilon, 0, 0)^T \\
 v_2 &\leftarrow (1, 0, \epsilon, 0)^T, \quad v_{12} = q_1^* a_2 = 1, \quad v_2 = v_2 - 1 q_1 = (0, -\epsilon, 0, 0)^T \\
 v_3 &\leftarrow (1, 0, 0, \epsilon)^T, \quad v_{13} = q_1^* a_3 = 1, \quad v_3 = v_3 - 1 q_1 = (0, \epsilon, 0, 0)^T \\
 r_{22} &\leftarrow \sqrt{\epsilon}, \quad q_2 = v_2 / \sqrt{\epsilon} = (0, -1, 1, 0)^T / \sqrt{\epsilon} \\
 v_3 &\leftarrow (1, 0, 0, \epsilon)^T, \quad r_{23} = q_2^* a_3 = 0, \quad v_3 = v_3 - 0 q_2 = (0, -\epsilon, 0, \epsilon)^T \\
 r_{33} &\leftarrow \sqrt{\epsilon}, \quad q_3 = v_3 / \sqrt{\epsilon} = (0, 0, -1, 0)^T / \sqrt{\epsilon} \\
 \end{align*}$$
Example: Classical vs. Modified Gram-Schmidt

- Modified:
 \[v_1 \leftarrow (1, \epsilon, 0, 0)^T, \quad r_{11} = \sqrt{1 + \epsilon^2} \quad q_1 = v_1 / r_{11} = (1, \epsilon, 0, 0)^T \]
 \[v_2 \leftarrow (1, 0, \epsilon, 0)^T, \quad r_{12} = q_1^T v_2 = 1, \quad v_2 \leftarrow v_2 - q_1 = (0, -\epsilon, 0, 0)^T \]
 \[r_{22} = \sqrt{\epsilon}, \quad q_2 = v_2 / r_{22} = (0, -1, 1, 0)^T / \sqrt{\epsilon} \]
 \[v_3 \leftarrow (1, 0, 0, \epsilon)^T, \quad r_{13} = q_1^T v_3 = 1, \quad v_3 \leftarrow v_3 - q_1 = (0, -\epsilon, -\epsilon, 0)^T \]
 \[r_{23} = q_2^T v_3 = \epsilon / \sqrt{\epsilon}, \quad v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\epsilon / 2, -\epsilon / 2, \epsilon)^T \]
 \[r_{33} = \sqrt{\epsilon} / 2, \quad q_3 = v_3 / r_{33} = (0, -1, -1, 2)^T / \sqrt{\epsilon} \]

- Check Orthogonality:
 - Classical: \(q_1^T q_3 = (0, -1, 1, 0)(0, -1, 0, 1)^T / 2 = 1/2 \)
 - Modified: \(q_1^T q_3 = (0, -1, 1, 0)(0, -1, -1, 2)^T / \sqrt{\epsilon} = 0 \)

Operation Count - Modified G-S

- Example: Count all \(+, -, *, / \) in the Modified Gram-Schmidt algorithm (not just the leading term)

- \(\text{Operation Count} \)
 - Each \(+, -, *, /\), or \(\sqrt{\cdot}\) counts as one flop
 - No distinction between real and complex
 - No consideration of memory accesses or other performance aspects

- \(\text{Operation Count} \) for each operation is:
 \[#A = \sum_{i=1}^{n} \left(m - 1 + \sum_{j=i+1}^{n} m - 1 \right) = n(m - 1) + \sum_{i=1}^{n} (m - 1)(n - i) = n(n - 1) + \frac{n(n-1)(m-1)}{2} = \frac{1}{2} n(n+1)(m-1) \]
 \[#S = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{m}{n} = \sum_{i=1}^{n} m(n - i) = \frac{1}{2} mn(n - 1) \]
 \[#M = \sum_{i=1}^{n} \left(m + \sum_{j=i+1}^{n} 2m \right) = mn + \sum_{i=1}^{n} 2m(n - i) = mn + 2mn(n - 1) \]
 \[#D = \sum_{i=1}^{n} m = mn \]

- \(\text{Operation Count} \) for the total flop count is
 \[\frac{1}{2} n(n + 1)(m - 1) + \frac{1}{2} mn(n - 1) + mn^2 + mn = 2mn^2 + mn - \frac{1}{2} n^2 - \frac{1}{2} n \sim 2mn^2 \]

- The symbol \(\sim \) indicates asymptotic value as \(m, n \to \infty \) (leading term)

- Easier to find just the leading term:
 - Most work done in lines (7) and (8), with \(4m \) flops per iteration
 - Including the loops, the total becomes
 \[\sum_{i=1}^{n} \sum_{j=i+1}^{n} 4m = 4m \sum_{i=1}^{n} (n - i) \sim 4m \sum_{i=1}^{n} i = 2mn^2 \]