Hints for Problem Set 3

• **Problem 1e**
 Given a matrix M, how can you make a new matrix N such that the largest eigenvalue of N is related to the smallest eigenvalue of M?

• **Problem 1f**
 Try to generalize the idea from 1e. Given a matrix M, how can you create a new matrix N so that the biggest eigenvalue of N is related to the eigenvalue of M closest to λ?

• **Problem 2b**
 If I have a polynomial $p(x)$ in one variable and I apply it to a matrix with the given eigenvalue bounds, I get a new matrix N. What can I say about its eigenvalues? What properties of p will guarantee that N still has the same eigenvector with eigenvalue 1 but that every vector orthogonal to it gets shrunk significantly in norm?

• **Problem 2c**
 Look really carefully at the description of conjugate gradient in Shewchuk's article. I claim that we've already computed everything I'm asking you for.

• **Problem 2e**
 For any polynomial p of degree $t-1$, show that there is a vector v in $\mathcal{K}(A,x,t)$ such that $v=p(A)x$. Argue that for a random x, there is some polynomial p for which the corresponding v gives a good Rayleigh quotient, and thus a good estimate for the biggest and smallest eigenvalues of A.

• **Problem 3**
 Make a new $2n \times 2n$ matrix A and a vector q, and solve the linear system:
 \[Ax = q \]
 q will be the vector $[b; -b]$.
 A will be made (somehow) by combining (somehow—maybe you’ll need to add them to each other, etc.) the following pieces:

 - $D =$ the diagonal of M
 - $P =$ the matrix of positive entries of M (with everything else set to zero)
 - $N =$ the matrix of negative entries of M (with everything else set to zero)

• **Problem 4d**
 You have to show how to route the edges of G over those of H' with low maximum total stretch, so that you can apply part (a). Part (c) tells you how to route the edges that are internal to a given G_i. Use this to get a bound on the contribution of these edges to the total stretch.

 You then just need to figure out how to route the edges that cross from one G_i to some other G_j. Route these edges internally in G_i, across the bridge edge we’ve added, and then internally in G_j. Bound the contribution of these edges.