Section 10

Chi-squared goodness-of-fit test.

Example. Let us start with a Matlab example. Let us generate a vector X of 100 i.i.d. uniform random variables on $[0,1]$:

$$X = \text{rand}(100,1).$$

Parameters $(100,1)$ here mean that we generate a 100×1 matrix or uniform random variables. Let us test if the vector X comes from distribution $U[0,1]$ using χ^2 goodness-of-fit test:

$$[H,P,\text{STATS}] = \text{chi2gof}(X,'cdf',@\text{unifcdf}(z,0,1), 'edges', 0:0.2:1)$$

The output is

$$H = 0, \ P = 0.0953,$$

$$\text{STATS} = \text{chi2stat}: 7.9000$$

$$\text{df}: 4$$

$$\text{edges}: [0 0.2 0.4 0.6 0.8 1]$$

$$0: [17 16 24 29 14]$$

$$E: [20 20 20 20 20]$$

We accept null hypothesis $H_0 : \mathbb{P} = U[0,1]$ at the default level of significance $\alpha = 0.05$ since the p-value 0.0953 is greater than α. The meaning of other parameters will become clear when we explain how this test works. Parameter ’cdf’ takes the handle @ to a fully specified c.d.f. For example, to test if the data comes from $N(3,5)$ we would use ’@normcdf(z,3,5)’, or to test Poisson distribution $\Pi(4)$ we would use ’@poisscdf(z,4).’

It is important to note that when we use chi-squared test to test, for example, the null hypothesis $H_0 : \mathbb{P} = N(1,2)$, the alternative hypothesis is $H_0 : \mathbb{P} \neq N(1,2)$. This is different from the setting of t-tests where we would assume that the data comes from normal distribution and test $H_0 : \mu = 1 \ vs. \ H_0 : \mu \neq 1$.
Pearson’s theorem.
Chi-squared goodness-of-fit test is based on a probabilistic result that we will prove in this section.

\[
\begin{array}{ccc}
\nu_1 & \nu_2 & \nu_r \\
\circ \circ & \circ \circ & \circ \circ \\
B_1 & B_2 & B_r \\
p_1 & p_2 & p_r \\
\end{array}
\]

Figure 10.1:

Let us consider \(r \) boxes \(B_1, \ldots, B_r \) and throw \(n \) balls \(X_1, \ldots, X_n \) into these boxes independently of each other with probabilities

\[
P(X_i \in B_1) = p_1, \ldots, P(X_i \in B_r) = p_r,
\]

so that

\[
p_1 + \ldots + p_r = 1.
\]

Let \(\nu_j \) be a number of balls in the \(j \)th box:

\[
\nu_j = \#\{\text{balls } X_1, \ldots, X_n \text{ in the box } B_j\} = \sum_{l=1}^{n} I(X_l \in B_j).
\]

On average, the number of balls in the \(j \)th box will be \(np_j \) since

\[
\mathbb{E} \nu_j = \sum_{l=1}^{n} \mathbb{E} I(X_l \in B_j) = \sum_{l=1}^{n} P(X_l \in B_j) = np_j.
\]

We can expect that a random variable \(\nu_j \) should be close to \(np_j \). For example, we can use a Central Limit Theorem to describe precisely how close \(\nu_j \) is to \(np_j \). The next result tells us how we can describe the closeness of \(\nu_j \) to \(np_j \) simultaneously for all boxes \(j \leq r \). The main difficulty in this theorem comes from the fact that random variables \(\nu_j \) for \(j \leq r \) are not independent because the total number of balls is fixed

\[
\nu_1 + \ldots + \nu_r = n.
\]

If we know the counts in \(n - 1 \) boxes we automatically know the count in the last box.

Theorem. (Pearson) We have that the random variable

\[
\sum_{j=1}^{r} \frac{(\nu_j - np_j)^2}{np_j} \rightarrow^{d} \chi^2_{r-1}
\]

converges in distribution to \(\chi^2_{r-1} \)-distribution with \((r - 1)\) degrees of freedom.
Proof. Let us fix a box B_j. The random variables

$$I(X_1 \in B_j), \ldots, I(X_n \in B_j)$$

that indicate whether each observation X_i is in the box B_j or not are i.i.d. with Bernoulli distribution $B(p_j)$ with probability of success

$$\mathbb{E}I(X_1 \in B_j) = \mathbb{P}(X_1 \in B_j) = p_j$$

and variance

$$\text{Var}(I(X_1 \in B_j)) = p_j(1 - p_j).$$

Therefore, by Central Limit Theorem the random variable

$$\frac{\nu_j - np_j}{\sqrt{np_j(1 - p_j)}} = \frac{\sum_{i=1}^{n} I(X_i \in B_j) - np_j}{\sqrt{np_j(1 - p_j)}}$$

$$= \frac{\sum_{i=1}^{n} I(X_i \in B_j) - n\mathbb{E}}{\sqrt{n\text{Var}}} \rightarrow^d N(0,1)$$

converges in distribution to $N(0,1)$. Therefore, the random variable

$$\frac{\nu_j - np_j}{\sqrt{np_j}} \rightarrow^d \sqrt{1 - p_j}N(0,1) = N(0,1 - p_j)$$

converges to normal distribution with variance $1 - p_j$. Let us be a little informal and simply say that

$$\frac{\nu_j - np_j}{\sqrt{np_j}} \rightarrow Z_j$$

where random variable $Z_j \sim N(0,1 - p_j)$.

We know that each Z_j has distribution $N(0,1 - p_j)$ but, unfortunately, this does not tell us what the distribution of the sum $\sum Z_j^2$ will be, because as we mentioned above r.v.s ν_j are not independent and their correlation structure will play an important role. To compute the covariance between Z_i and Z_j let us first compute the covariance between

$$\frac{\nu_i - np_i}{\sqrt{np_i}} \text{ and } \frac{\nu_j - np_j}{\sqrt{np_j}}$$

which is equal to

$$\mathbb{E}\frac{\nu_i - np_i}{\sqrt{np_i}} \frac{\nu_j - np_j}{\sqrt{np_j}} = \frac{1}{n \sqrt{p_imop_j}}(\mathbb{E}\nu_i \nu_j - \mathbb{E}\nu_i np_j - \mathbb{E}\nu_j np_i + n^2 p_ip_j)$$

$$= \frac{1}{n \sqrt{p_ip_j}}(\mathbb{E}\nu_i \nu_j - np_i np_j - np_j np_i + n^2 p_ip_j) = \frac{1}{n \sqrt{p_ip_j}}(\mathbb{E}\nu_i \nu_j - n^2 p_ip_j).$$

To compute $\mathbb{E}\nu_i \nu_j$ we will use the fact that one ball cannot be inside two different boxes simultaneously which means that

$$I(X_t \in B_i)I(X_t \in B_j) = 0. \quad (10.0.1)$$
Therefore,
\[
\mathbb{E} \nu_i \nu_j = \mathbb{E} \left(\sum_{l=1}^{n} I(X_l \in B_i) \right) \left(\sum_{l'=1}^{n} I(X_{l'} \in B_j) \right) = \mathbb{E} \sum_{l,l'} I(X_l \in B_i) I(X_{l'} \in B_j)
\]
\[
= \mathbb{E} \sum_{l=l'} I(X_l \in B_i) I(X_{l'} \in B_j) + \mathbb{E} \sum_{l \neq l'} I(X_l \in B_i) I(X_{l'} \in B_j)
\]
this equals to 0 by (10.0.1)
\[
= n(n-1) \mathbb{E} I(X_i \in B_j) \mathbb{E} I(X_{l'} \in B_j) = n(n-1)p_ip_j.
\]

Therefore, the covariance above is equal to
\[
\frac{1}{n \sqrt{p_ip_j}} \left(n(n-1)p_ip_j - n^2 p_ip_j \right) = -\sqrt{p_ip_j}.
\]

To summarize, we showed that the random variable
\[
\sum_{j=1}^{r} \frac{(\nu_j - np_j)^2}{np_j} \rightarrow \sum_{j=1}^{r} Z_j^2.
\]
where normal random variables Z_1, \ldots, Z_n satisfy
\[
\mathbb{E} Z_i^2 = 1 - p_i \text{ and covariance } \mathbb{E} Z_i Z_j = -\sqrt{p_i p_j}.
\]

To prove the Theorem it remains to show that this covariance structure of the sequence of (Z_i) implies that their sum of squares has χ_r^{2}-distribution. To show this we will find a different representation for $\sum Z_j^2$.

Let g_1, \ldots, g_r be i.i.d. standard normal random variables. Consider two vectors
\[
g = (g_1, \ldots, g_r)^T \text{ and } p = (\sqrt{p_1}, \ldots, \sqrt{p_r})^T
\]
and consider a vector $g - (g \cdot p)p$, where $g \cdot p = g_1 \sqrt{p_1} + \ldots + g_r \sqrt{p_r}$ is a scalar product of g and p. We will first prove that
\[
g - (g \cdot p)p \text{ has the same joint distribution as } (Z_1, \ldots, Z_r).
\] (10.0.2)

To show this let us consider two coordinates of the vector $g - (g \cdot p)p$:
\[
i^{th}: g_i = \sum_{l=1}^{r} g_l \sqrt{p_l} \sqrt{p_i} \quad \text{and} \quad j^{th}: g_j = \sum_{l=1}^{r} g_l \sqrt{p_l} \sqrt{p_j}
\]
and compute their covariance:
\[
\mathbb{E} \left(g_i - \sum_{l=1}^{r} g_l \sqrt{p_l} \sqrt{p_i} \right) \left(g_j - \sum_{l=1}^{r} g_l \sqrt{p_l} \sqrt{p_j} \right)
\]
\[
= -\sqrt{p_i} \sqrt{p_j} - \sqrt{p_j} \sqrt{p_i} + \sum_{l=1}^{n} p_l \sqrt{p_i} \sqrt{p_j} = -2\sqrt{p_ip_j} + \sqrt{p_ip_j} = -\sqrt{p_ip_j}.
\]
Similarly, it is easy to compute that

\[
\mathbb{E}\left(g_i - \sum_{l=1}^{r} g_l \sqrt{p_l} \sqrt{p_l} \right)^2 = 1 - p_i.
\]

This proves (10.0.2), which provides us with another way to formulate the convergence, namely, we have

\[
\sum_{j=1}^{r} \left(\frac{V_j - np_j}{\sqrt{np_j}} \right)^2 \rightarrow^d |\mathbf{g} - (\mathbf{g} \cdot \mathbf{p})\mathbf{p}|^2.
\]

But this vector has a simple geometric interpretation. Since vector \(\mathbf{p} \) is a unit vector:

\[
|\mathbf{p}|^2 = \sum_{l=1}^{r} (\sqrt{p_l})^2 = \sum_{l=1}^{r} p_l = 1,
\]

vector \(\mathbf{V}_1 = (\mathbf{p} \cdot \mathbf{g})\mathbf{p} \) is the projection of vector \(\mathbf{g} \) on the line along \(\mathbf{p} \) and, therefore, vector \(\mathbf{V}_2 = \mathbf{g} - (\mathbf{p} \cdot \mathbf{g})\mathbf{p} \) will be the projection of \(\mathbf{g} \) onto the plane orthogonal to \(\mathbf{p} \), as shown in figure 10.2.

![Figure 10.2: New coordinate system.](image)

Let us consider a new orthonormal coordinate system with the first basis vector (first axis) equal to \(\mathbf{p} \). In this new coordinate system vector \(\mathbf{g} \) will have coordinates

\[
\mathbf{g}' = (g'_1, \ldots, g'_r) = \mathbf{V} \mathbf{g}
\]
obtained from g by orthogonal transformation

$$V = (p, p_2, \ldots, p_r)$$

that maps canonical basis into this new basis. But we proved in Lecture 4 that in that case g'_1, \ldots, g'_r will also be i.i.d. standard normal. From figure 10.2 it is obvious that vector $V_2 = g - (p \cdot g)p$ in the new coordinate system has coordinates

$$(0, g'_2, \ldots, g'_r)^T$$

and, therefore,

$$|V_2|^2 = |g - (p \cdot g)p|^2 = (g'_2)^2 + \ldots + (g'_r)^2.$$

But this last sum, by definition, has χ^2_{r-1} distribution since g'_2, \ldots, g'_r are i.i.d. standard normal. This finishes the proof of Theorem.

\[\square\]

Chi-squared goodness-of-fit test for simple hypothesis.

Suppose that we observe an i.i.d. sample X_1, \ldots, X_n of random variables that take a finite number of values B_1, \ldots, B_r with unknown probabilities p_1, \ldots, p_r. Consider hypotheses

$$H_0: \quad p_i = p_i^0 \text{ for all } i = 1, \ldots, r,$$

$$H_1: \quad \text{for some } i, p_i \neq p_i^0.$$

If the null hypothesis H_0 is true then by Pearson’s theorem

$$T = \sum_{i=1}^r \frac{(\nu_i - np_i^0)^2}{np_i^0} \rightarrow^d \chi^2_{r-1}$$

where $\nu_i = \#\{X_j : X_j = B_i\}$ are the observed counts in each category. On the other hand, if H_1 holds then for some index i, $p_i \neq p_i^0$ and the statistics T will behave differently. If p_i is the true probability $\mathbb{P}(X_1 = B_i)$ then by CLT

$$\frac{\nu_i - np_i}{\sqrt{np_i}} \rightarrow^d N(0, 1 - p_i).$$

If we rewrite

$$\frac{\nu_i - np_i^0}{\sqrt{np_i^0}} = \frac{\nu_i - np_i + n(p_i - p_i^0)}{\sqrt{np_i}} = \sqrt{\frac{p_i}{np_i^0}} \nu_i - np_i + \sqrt{n} \frac{p_i - p_i^0}{\sqrt{np_i}}$$

then the first term converges to $N(0, (1 - p_i)p_i/p_i^0)$ and the second term diverges to plus or minus ∞ because $p_i \neq p_i^0$. Therefore,

$$\frac{(\nu_i - np_i^0)^2}{np_i^0} \rightarrow +\infty$$

which, obviously, implies that $T \rightarrow +\infty$. Therefore, as sample size n increases the distribution of T under null hypothesis H_0 will approach χ^2_{r-1}-distribution and under alternative hypothesis H_1 it will shift to $+\infty$, as shown in figure 10.3.

67
Therefore, we define the decision rule

\[
\delta = \begin{cases}
H_1: & T \leq c \\
H_2: & T > c.
\end{cases}
\]

We choose the threshold \(c\) from the condition that the error of type 1 is equal to the level of significance \(\alpha\):

\[
\alpha = \mathbb{P}(\delta \neq H_1) = \mathbb{P}(T > c) \approx \chi^2_{r-1}(c, \infty)
\]

since under the null hypothesis the distribution of \(T\) is approximated by \(\chi^2_{r-1}\) distribution. Therefore, we take \(c\) such that \(\alpha = \chi^2_{r-1}(c, \infty)\). This test \(\delta\) is called the chi-squared goodness-of-fit test.

Example. (Montana outlook poll.) In a 1992 poll 189 Montana residents were asked (among other things) whether their personal financial status was worse, the same or better than a year ago.

<table>
<thead>
<tr>
<th></th>
<th>Worse</th>
<th>Same</th>
<th>Better</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58</td>
<td>64</td>
<td>67</td>
<td>189</td>
</tr>
</tbody>
</table>

We want to test the hypothesis \(H_0\) that the underlying distribution is uniform, i.e. \(p_1 = p_2 = p_3 = 1/3\). Let us take level of significance \(\alpha = 0.05\). Then the threshold \(c\) in the chi-squared
test

\[\delta = \begin{cases}
H_0: & T \leq c \\
H_1: & T > c
\end{cases} \]

is found from the condition that \(\chi^2_{3-1=2}(c, \infty) = 0.05 \) which gives \(c = 5.9 \). We compute chi-squared statistic

\[T = \frac{(58 - 189/3)^2}{189/3} + \frac{(64 - 189/3)^2}{189/3} + \frac{(67 - 189/3)^2}{189/3} = 0.666 < 5.9 \]

which means that we accept \(H_0 \) at the level of significance 0.05.

Goodness-of-fit for continuous distribution.

Let \(X_1, \ldots, X_n \) be an i.i.d. sample from unknown distribution \(\mathbb{P} \) and consider the following hypotheses:

\[\begin{cases}
H_0: & \mathbb{P} = \mathbb{P}_0 \\
H_1: & \mathbb{P} \neq \mathbb{P}_0
\end{cases} \]

for some particular, possibly continuous distribution \(\mathbb{P}_0 \). To apply the chi-squared test above we will group the values of \(X \)'s into a finite number of subsets. To do this, we will split a set of all possible outcomes \(\mathcal{X} \) into a finite number of intervals \(I_1, \ldots, I_r \) as shown in figure 10.4.

![Figure 10.4: Discretizing continuous distribution.](image-url)
The null hypothesis H_0, of course, implies that for all intervals
$$\mathbb{P}(X \in I_j) = \mathbb{P}_0(X \in I_j) = p_j^0.$$
Therefore, we can do chi-squared test for
$$H'_0: \quad \mathbb{P}(X \in I_j) = p_j^0 \text{ for all } j \leq r$$
$$H'_1: \quad \text{otherwise.}$$

Asking whether H'_0 holds is, of course, a weaker question than asking if H_0 holds, because H_0 implies H'_0, but not the other way around. There are many distributions different from \mathbb{P} that have the same probabilities of the intervals I_1, \ldots, I_r as \mathbb{P}. On the other hand, if we group into more and more intervals, our discrete approximation of \mathbb{P} will get closer and closer to \mathbb{P}, so in some sense H'_0 will get ‘closer’ to H_0. However, we can not split into too many intervals either, because the χ^2_{r-1}-distribution approximation for statistic T in Pearson’s theorem is asymptotic. The rule of thumb is to group the data in such a way that the expected count in each interval
$$np_i^0 = n\mathbb{P}_0(X \in I_i) \geq 5$$
is at least 5. (Matlab, for example, will give a warning if this expected number will be less than five in any interval.) One approach could be to split into intervals of equal probabilities $p_i^0 = 1/r$ and choose their number r so that
$$np_i^0 = \frac{n}{r} \geq 5.$$

Example. Let us go back to the example from Lecture 2. Let us generate 100 observations from Beta distribution $B(5,2)$.

```matlab
X = betarnd(5,2,100,1);
```

Let us fit normal distribution $N(\mu, \sigma^2)$ to this data. The MLE $\hat{\mu}$ and $\hat{\sigma}$ are

mean(X) = 0.7421, std(X,1)=0.1392.

Note that ‘std(X)’ in Matlab will produce the square root of unbiased estimator $(n/n-1)\hat{\sigma}^2$. Let us test the hypothesis that the sample has this fitted normal distribution.

```matlab
[H,P,STATS] = chi2gof(X,’cdf’,@(z)normcdf(z,0.7421,0.1392))
```

outputs

H = 1, P = 0.0041,
STATS = chi2stat: 20.7589
df: 7
edges: [1x9 double]
0: [14 4 11 14 16 21 6]
E: [1x8 double]

Our hypothesis was rejected with p-value of 0.0041. Matlab split the real line into 8 intervals of equal probabilities. Notice ‘df: 7’ - the degrees of freedom $r-1 = 8 - 1 = 7$.

m