1. For a given \(n \), let \(j \) be the greatest integer \(\leq n/4 \) and let \(k \) be the smallest integer \(\geq 3n/4 \). Then one possible definition of the \textit{interquartile range} is \(X(k) - X(j) \). Find the breakdown point of this statistic, and its limit as \(n \to \infty \).

2. Randles and Wolfe p. 246 Problem 7.4.1 (show that the inequality holds for all \(\theta \)).

4. In the handout “Breakdown points of 1-dimensional location M-estimators”, it is stated that if \(k \) is an integer \(\geq n/2 \), then given \(X_1, \ldots, X_n \), there exist \(Y_1, \ldots, Y_n \) with \(Y_i = X_i \) for \(n - k \) values of \(i \) while \(Y_1, \ldots, Y_n \) are symmetrically distributed around an arbitrarily large median, which is then the M-estimator. Prove these statements in detail.

5. Consider the data set \(0, 1, 2, 2, 4.5, 5.6, 8.9 \).

 (a) Find the breakdown point of \(1/S \) at this data set, where \(S \) is \(S^* \) as defined in R&W, (7.4.16).

 (b) Compare the breakdown point of the M-estimator (which uses \(S = S^* \)) to that of \(1/S \).