Asymptotics III: Bayes Inference and Large-Sample Tests

MIT 18.655

Dr. Kempthorne

Spring 2016
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures
 - Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
Consistency of Posterior Distribution

Framework

- \(X_1, \ldots, X_n\) iid \(P_\theta, \theta \in \Theta\).
- \(\Theta\) (open) \(\subset \mathbb{R}\) or \(\Theta = \{\theta_1, \ldots, \theta_k\}\) finite.
- Regular model with identifiable \(\theta\).

Consistency: Finite \(\Theta\)

Posterior distribution of \(\theta\) given \(X_n = (X_1, \ldots, X_n)\):

\[
\pi(\theta' | X_n) \equiv P[\theta = \theta' | X_1, \ldots, X_n], \theta' \in \Theta.
\]

Definition: \(\pi(\cdot | X_n)\) is **consistent** if and only if for every \(\theta' \in \Theta\),

\[P_{\theta'}[|\pi(\theta' | X_n) - 1|] \geq \epsilon \to 0\]

for all \(\epsilon > 0\).

Definition: \(\pi(\cdot | X_n)\) is **a.s. (almost surely) consistent** if and only if for every \(\theta' \in \Theta\),

\[
\pi(\theta' | X_n) \xrightarrow{\text{a.s.} P_{\theta'}} 1.
\]
Consistency of Posterior Distribution

Theorem 5.5.1 Let $\pi_j = P[\theta = \theta_j]$, $j = 1, \ldots, k$ denote the prior distribution of θ. Then

$$\pi(\cdot \mid X_n)$$ is consistent iff $\pi_j > 0$, for all $\pi_j \in \Theta$.

Proof:

- Let $p(x \mid \theta)$ denote the density/pmf function of a single X_i.

 The posterior distribution is given by:

 $$\pi(\theta_j \mid X_1, \ldots, X_n) = P[\theta = \theta_j \mid X_1, \ldots, X_n] = \frac{\pi_j \prod_{i=1}^{n} p(X_i \mid \theta_j)}{\sum_{a=1}^{k} \pi_a \prod_{i=1}^{n} p(X_i \mid \theta_a)}$$

 If any $\pi_j = 0$, then $\pi(\theta_j \mid X_n) = 0$ for all n; i.e., the posterior is not consistent.

- Suppose all $\pi_j > 0$. For a fixed j, suppose θ_j is true, i.e., $\theta = \theta_j$.

 We show that

 $$\pi(\theta_j \mid X_n) \longrightarrow 1 \text{ and } \pi(\theta_a \mid X_n) \longrightarrow 0, \text{ for } a \neq j.$$
Proof (continued)

Evaluate the log of the posterior odds to the true \(\theta \):

\[
\log \left[\frac{\pi(\theta_a \mid X_n)}{\pi(\theta_j \mid X_n)} \right] = \log \left[\frac{\pi_a \prod_{i=1}^{n} p(X_i \mid \theta_a)}{\pi_j \prod_{i=1}^{n} p(X_i \mid \theta_j)} \right] \\
= \log \left[\frac{\pi_a}{\pi_j} \right] + \log \left[\frac{\prod_{i=1}^{n} p(X_i \mid \theta_a)}{\prod_{i=1}^{n} p(X_i \mid \theta_j)} \right] \\
= \log \left[\frac{\pi_a}{\pi_j} \right] + \sum_{i=1}^{n} \log \left[\frac{p(X_i \mid \theta_a)}{p(X_i \mid \theta_j)} \right] \\
= n \left(\frac{1}{n} \log \left[\frac{\pi_a}{\pi_j} \right] \right) + \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{p(X_i \mid \theta_a)}{p(X_i \mid \theta_j)} \right] \\
\rightarrow n \left(0 + E \left[\log \left[\frac{p(X_1 \mid \theta_a)}{p(X_1 \mid \theta_j)} \right] \right] \right) \\
\rightarrow \begin{cases}
0 & \text{if } a = j \\
-\infty & \text{if } a \neq j
\end{cases}

(Shannon’s Inequality gives \(E \left[\log \left[\frac{p(X_1 \mid \theta_a)}{p(X_1 \mid \theta_j)} \right] \right] < 0 \), for \(a \neq j \))
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures

2. Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
Theorem 5.5.2 ("Bernstein/von Mises").

- \(\mathbf{X}_n = (X_1, \ldots, X_n) \) where the \(X_i \) are iid \(P_{\theta_0}, \theta_0 \in \Theta \).
- \(\hat{\theta}_n = \hat{\theta}_n(\mathbf{X}_n) \) is the MLE of \(\theta_0 \).
- Regularity conditions are satisfied such that
 \[
 \sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{L} N(0, I^{-1}(\theta_0)).
 \]
- The prior distribution on \(\Theta \) has density \(\pi(\cdot) \) which is continuous and positive at all \(\theta' \in \Theta \).
- Consider the scaled version of the posterior distribution:
 \[
 \mathcal{L} \left(\sqrt{n}(\theta - \hat{\theta}) \mid \mathbf{X}_n \right)
 \]

Under sufficient regularity conditions:
\[
\mathcal{L} \left(\sqrt{n}(\theta - \hat{\theta}) \mid \mathbf{X}_n \right) \longrightarrow N(0, I^{-1}(\theta_0))
\]
i.e.,
\[
\pi \left(\sqrt{n}(\theta - \hat{\theta}) \leq x \mid \mathbf{X}_n \right) \longrightarrow \Phi(x \sqrt{I(\theta_0)})
\]
Proof:

- To compute the asymptotic distribution of $\sqrt{n}(\theta - \hat{\theta}(X_n))$, define

$$t = \sqrt{n}(\theta - \hat{\theta}(X_n))$$

so that

$$\theta = \hat{\theta}(X_n) + \frac{t}{\sqrt{n}}.$$

- The posterior density of t given X_n is

$$q_n(t) \propto \pi(\hat{\theta}(X_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^{n} p(X_i \mid \hat{\theta}(X_n) + \frac{t}{\sqrt{n}})$$

$$= c_n^{-1} \pi(\hat{\theta}(X_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^{n} p(X_i \mid \hat{\theta}(X_n) + \frac{t}{\sqrt{n}})$$

where $c_n = \int_{-\infty}^{\infty} \pi(\hat{\theta}(X_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^{n} p(X_i \mid \hat{\theta}(X_n) + \frac{t}{\sqrt{n}})dt$.

- Divide numerator and denominator of $q_n(t)$ by

$$\prod_{i=1}^{n} p(X_i \mid \hat{\theta}(X_n))$$
Proof (continued)

\[q_n(t) = \frac{1}{c_n^{-1}} \pi(\hat{\theta}(X_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^{n} p(X_i | \hat{\theta}(X_n) + \frac{t}{\sqrt{n}}) \]

\[= \frac{1}{c_n^{-1}} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^{n} \log(p(X_i | \hat{\theta} + \frac{t}{\sqrt{n}}))\} \]

\[= \frac{1}{d_n^{-1}} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^{n} \ell(X_i | \hat{\theta} + \frac{t}{\sqrt{n}}) - \ell(X_i, \hat{\theta})\} \]

where

\[d_n = \int_{-\infty}^{\infty} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^{n} \ell(X_i | \hat{\theta} + \frac{t}{\sqrt{n}}) - \ell(X_i, \hat{\theta})\} \, dt \]

Claims

- \(d_n q_n(t) \xrightarrow{P_{\theta_0}} \pi(\theta_0) \exp\{-\frac{t^2I(\theta_0)}{2}\} \)
- \(d_n \xrightarrow{P_{\theta_0}} \pi(\theta_0) \int_{-\infty}^{\infty} \exp\{-\frac{s^2I(\theta_0)}{2}\} \, ds = \frac{\pi(\theta_0) \sqrt{2\pi}}{\sqrt{I(\theta_0)}} \)

which give:

\[q_n \xrightarrow{P_{\theta_0}} \sqrt{I(\theta_0)} \phi(t \sqrt{I(\theta_0)}). \]

Theorem follows by Scheffe’s Theorem (B.7.6).
Limiting Posterior Distributions: Examples

Posterior Distribution of Normal Mean

- X_1, \ldots, X_n iid $N(\theta_0, \sigma^2)$ with σ^2 known.
- Prior distribution: $\theta \sim N(\eta, \tau^2)$.
- Posterior distribution:
 \[
 \pi(\theta | X_n) = N(\eta_n, \tau_n^2),
 \]
 where
 \[
 \tau_n^{-2} = \tau^{-2} + \frac{n}{\sigma^2}
 \]
 \[
 \eta_n = w_n \eta + (1 - w_n) \bar{X}, \text{ with } w_n = \frac{\sigma^2}{n\tau^2 + \sigma^2}
 \]

Note:

- $\eta_n \rightarrow \hat{\theta} = \bar{X}, \tau_n^2 \rightarrow 0$, and $\bar{X} \xrightarrow{P_{\theta_0}} \theta$, so
 \[
 \pi(\theta | X_n) \xrightarrow{P_{\theta_0}} \text{ point-mass at } \theta = \theta_0.
 \]
- A posteriori,
 \[
 \sqrt{n}(\theta - \hat{\theta}) \sim N(\sqrt{n}w_n(\eta - \bar{X}), n\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1})
 \]
 \[
 \longrightarrow N(0, I^{-1}(\theta_0)) = N(0, \sigma^2)
 \]
Limiting Posterior Distributions: Examples

Posterior Distribution of Success Probability in Bernoulli Trials

- X_1, \ldots, X_n iid $Bernoulli(\theta_0)$.
- $S_n = \sum_{1}^{n} X_i \sim Binomial(n, \theta_0)$.
- Prior distribution: $\theta \sim Beta(r, s)$.
- Posterior distribution $\theta \mid S_n \sim Beta(r^*, s^*)$, where $r^* = S_n + r$, and $s^* = s + (n - S_n)$.
- By Problem 5.3.20, if $r^* \to \infty$ and $s^* \to \infty$ such that $r^*/(r^* + s^*) \to \theta_0 \in (0, 1)$, then the $Beta(r^*, s^*)$ r.v. θ:
 $$P \left[\sqrt{r^* + s^*} \frac{\theta - r^*/(r^* + s^*)}{\sqrt{\theta_0(1 - \theta_0)}} \right] \to N(0, 1).$$

This is easily shown to be equivalent to
 $$\sqrt{n} (\theta - \bar{X}) \overset{L}{\to} N(0, \theta_0(1 - \theta_0)) = N(0, I^{-1}(\theta_0))$$
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures

2. Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
Theorem 5.5.3 Under the conditions of the previous theorems, let $\hat{\theta}$ be the MLE of θ and let $\hat{\theta}^*$ be the median of the posterior distribution of θ. Then

(i). From a frequentist point of view, i.e., given P_θ:

$$\sqrt{n}(\hat{\theta}^* - \hat{\theta}) \xrightarrow{a.s.} 0, \text{ for all } \theta$$

$$\hat{\theta}^* = \theta + \frac{1}{n} \sum_{i=1}^{n} I^{-1}(\theta) \frac{\partial \ell}{\partial \theta}(X_i, \theta) + o_{P_\theta}(n^{-1/2})$$

$$\sqrt{n}(\hat{\theta}^* - \theta) \xrightarrow{L} N(0, I^{-1}(\theta)).$$

(ii). From a Bayesian point of view, i.e., for $\pi(\theta | X_1, \ldots, X_n)$:

$$E[\sqrt{n}(|\theta - \hat{\theta}|) - |\theta - \hat{\theta}^*| | X_1, \ldots, X_n] = o_P(1), \text{ and }$$

$$E[\sqrt{n}(|\theta - \hat{\theta}|) - |\theta| | X_1, \ldots, X_n] = \min_d \left(E[\sqrt{n}(|\theta - d|) - |\theta| | X_1, \ldots, X_n] \right) + o_P(1).$$
Significant Results

- Bayes estimates for a wide variety of loss functions and priors are asymptotically efficient in the sense being asymptotically unbiased with minimum asymptotic variance.
- Maximum-likelihood estimates are asymptotically equivalent in a Bayesian sense to the Bayes estimate for a variety of priors and loss functions.

 E.g., the Bayesian posterior median with \(L(\theta, d) = |\theta - d| \),

 the Bayesian posterior mean with \(L(\theta, d) = |\theta - d|^2 \).
Theorem 5.5.4 Under the conditions of the previous theorems, consider

- The **Bayes Credible Region**:
 \[C_n(X_1, \ldots, X_n) = \{ \theta : \pi(\theta \mid X_1, \ldots, X_n) \geq c_n \} \]
 where \(c_n \) is chosen so that \(\pi(C_n \mid X_1, \ldots, X_n) = 1 - \alpha \).

- For \(\gamma : 0 < \gamma < 1 \), the level \((1 - \gamma) \) **Asymptotically Optimal Interval Estimate** based on \(\hat{\theta} \), given by
 \[\text{Interval}_n(\gamma) = [\hat{\theta} - d_n(\gamma), \hat{\theta} + d_n(\gamma)] \]
 where \(d_n(\gamma) = [\Phi^{-1}(1 - \gamma/2)] \times \left(\frac{1}{\sqrt{n} \sqrt{[I(\theta_0)]}} \right) \).

Then, for every \(\epsilon > 0 \), and every \(\theta \):
\[
P_\theta [\text{Interval}_n(\alpha + \epsilon) \subset C_n(X_1, \ldots, X_n) \subset \text{Interval}_n(\alpha - \epsilon)] \longrightarrow 1 \]
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures

2. Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
Likelihood Ratio Test Statistic

- \(\mathbf{X}_n = (X_1, \ldots, X_n) \) iid \(P_\theta, \theta \in \Theta \).
- Testing null vs alternative hypotheses:
 \[H : \theta \in \Theta_0 \text{ vs } K : \theta \not\in \Theta_0. \]
- Likelihood ratio statistic:
 \[
 \lambda(x_n) = \frac{\sup_{\theta \in \Theta} p(x_n | \theta)}{\sup_{\theta \in \Theta_0} p(x_n | \theta)}
 \]
 Standard transformation:
 \[
 2 \log \lambda(x_n) = 2[\ell_n(\hat{\theta} | x_n) - \ell_n(\hat{\theta}_0 | x_n)]
 \]
 where \(\hat{\theta}(x_n) \) is the MLE (over all \(\Theta \)) and \(\hat{\theta}_0(x_n) \) is the MLE under \(H : \theta \in \Theta_0 \).

Theorem 6.3.1 Given suitable assumptions (e.g. Theorem 6.2.2), if \(\Theta \subset \mathbb{R}^r \), and \(H : \theta = \theta_0 \) is true, then

\[
2 \log \lambda(x) = 2[\ell_n(\hat{\theta} | x) - \ell_n(\theta_0)] \xrightarrow{\mathcal{L}} \chi^2_r,
\]
Theorem 6.2.2 Proof

- By Theorem 6.2.2. Given suitable assumptions, the MLE \(\hat{\theta}(x_n) \) satisfies
 \[
 \hat{\theta}(x_n) = \theta + \frac{1}{n} \sum_{i=1}^{n} I^{-1}(\theta)D\ell(X_i, \theta) + o_P(n^{-1/2})
 \]
 so that
 \[
 \sqrt{n}(\hat{\theta}(x_n) - \theta) \xrightarrow{L} N(0, I^{-1}(\theta)).
 \]

- The Taylor expansion of \(\ell_n(\theta) \) about \(\hat{\theta}(x_n) \) evaluated at \(\theta = \theta_0 \) gives
 \[
 2 \log \lambda(x) = 2[\ell_n(\hat{\theta} | x) - \ell_n(\theta_0 | X)]
 = n(\hat{\theta}(x_n) - \theta_0)^T I_n(\theta^*)(\hat{\theta}(x_n) - \theta_0)
 \]
 where \(I_n(\theta) = \| - \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta_k} \frac{\partial}{\partial \theta_j} \log p(X_i | \theta) \| \),
 the \(r \times r \) matrix: \(I_n(\theta) \xrightarrow{P_{\theta_0}} I(\theta_0) \).
With $V \sim N(0, I^{-1}(\theta_0))$,
\[
2 \log \lambda(x) = 2[\ell_n(\hat{\theta} | x) - \ell_n(\theta_0 | X)]
= n(\hat{\theta}(x_n) - \theta_0)^T I_n(\theta^*)(\hat{\theta}(x_n) - \theta_0)
\xrightarrow{\mathcal{L}} V^T I(\theta_0) V
\]
and by Corollary B.6.2
\[
V^T I(\theta_0) V \sim \chi^2_r.
\]

Theorem 6.3.2 Given suitable assumptions (e.g. Theorem 6.2.2), if $\Theta \subset \mathbb{R}^r$, and $H : \theta \in \Theta_0$ with Θ_0 of dimension $q < r$, then
\[
2 \log \lambda(x) = 2[\ell_n(\hat{\theta} | x) - \ell_n(\hat{\theta}_0 | X)] \xrightarrow{\mathcal{L}} \chi^2_{r-q}.
\]
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures

2. Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
The Wald Test

The asymptotic level-\(\alpha \) Wald Test of the simple hypothesis

\[H : \theta = \theta_0 \text{ vs } K : \theta \neq \theta_0 \]

rejects \(H \) when

\[W_n(\theta_0) = n(\hat{\theta}(x_n) - \theta_0)^T I(\theta_0)(\hat{\theta}(x_n) - \theta_0) \geq C^*, \]

where the critical value \(C^* \) is such that \(P(\chi^2_r > C^*) = 1 - \alpha \).

- Under the assumptions of Theorem 6.2.2
 \[\sqrt{n}(\hat{\theta}(x_n) - \theta) \xrightarrow{\mathcal{L}} N(0, I^{-1}(\theta)). \]

- By Slutsky’s theorem:
 \[n(\hat{\theta}(x_n) - \theta)^T I(\theta)(\hat{\theta}(x_n) - \theta) \xrightarrow{\mathcal{L}} V^T I(\theta)V \]
 where \(V \sim N_r(0, I^{-1}(\theta)). \)

The Wald Test extends to apply to a composite null hypothesis \(H : \theta \in \Theta_0 \subset \mathbb{R}^q \). If the MLE \(\hat{\theta}_0(x_n) \) under the null is consistent, then it can replace \(\theta_0 \) in the Wald Test statistic which is asymptotically \(\chi^2_{r-q} \) under \(H \), where \(q \) is the dimensionality of \(\Theta_0 \).
Outline

1. Asymptotics of Bayes Posterior Distributions
 - Consistency of Posterior Distribution
 - Asymptotic Normality of Posterior Distribution
 - Mutual Optimality of Bayes and MLE Procedures

2. Large Sample Tests
 - Likelihood Ratio Tests
 - Wald’s Large Sample Test
 - The Rao Score Test
The Rao Score Test

- Simple hypothesis \(H : \theta = \theta_0 \).
- Apply the Central Limit Theorem to the maximum-likelihood contrast function, evaluated at \(\theta = \theta_0 \):
 \[
 \psi_n(\theta_0) = \frac{1}{n} \sum_{i=1}^{n} D_\theta \ell_n(\theta_0) \xrightarrow{\mathcal{L}} N(0, I(\theta_0)),
 \]
 when \(H \) is true.
- It follows that under \(H \)
 \[
 R_n(\theta_0) = n\psi_n^T(\theta_0)I^{-1}(\theta_0)\psi_n(\theta_0) \xrightarrow{\mathcal{L}} \chi^2_r.
 \]

The asymptotic level-\(\alpha \) Rao Score Test rejects \(H \) when

\[
R_n(\theta_0) \geq C^*
\]

where \(C^* : P(\chi^2_r > C^*) = 1 - \alpha \).

Notes:

- The Rao Score Test does not require the MLE!!
- Extension to composite null hypothesis \(H \) only requires MLE under \(H \) (see Theorem 6.3.5).
18.655 Mathematical Statistics
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.